|   | 
Details
   web
Records
Author Lopez-Ruiz, H., Nezamuddin, N., Al Hassan, R., & Muhsen, A.
Title Estimating Freight Transport Activity Using Nighttime Lights Satellite Data in China, India and Saudi Arabia Type Journal Article
Year 2019 Publication (up) EconPapers Abbreviated Journal
Volume ks--2019-mp07 Issue Pages
Keywords Remote Sensing; Freight; shipping; freight transport activity; FTA; China; India; Saudi Arabia; Transportation; nighttime lights; NTL
Abstract This paper focuses on the methodology for estimating total freight transport activity (FTA) for three countries — China, India and Saudi Arabia — with the objective of building on current state-of-the-art transportation modeling in three key areas: Studying the relationship between nighttime lights (NTL) and FTA allows for an estimation of full transportation datasets for countries where only a few observation points exist or where data is unavailable. Establishing the foundation for future work on how to use this approach in transport flow estimation (origin-destination matrices). Determining whether this approach can be used globally, given the coverage of the satellite data used. The paper uses the KAPSARC Transport Analysis Framework (KTAF), which estimates transport activity from freely available global data sources, satellite images and NTL. It is a tool for estimating freight transport activity that can be used in models to measure the impact of an accelerated transport policy planning approach. The methodology offers a solution to inadequate data access and allows for scenario building in policy planning for transportation. This approach allows for quick estimation of the effects of policy measures and economic changes on transportation activities at a global level. The paper also includes a detailed guide on how to replicate the methodology used in this analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2639
Permanent link to this record
 

 
Author Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M.
Title Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant Type Journal Article
Year 2019 Publication (up) Ecosphere Abbreviated Journal Ecosphere
Volume 10 Issue 1 Pages e02550
Keywords Ecology; Animals; Plants
Abstract Artificial light at night (ALAN) is an increasingly important driver of global change. Lighting directly affects plants, but few studies have investigated indirect effects mediated by interacting organisms. Nocturnal Lepidoptera are globally important pollinators, and pollen transport by moths is disrupted by lighting. Many street lighting systems are being replaced with novel, energy‐efficient lighting, with unknown ecological consequences. Using the wildflower Silene latifolia, we compared pollination success and quality at experimentally lit and unlit plots, testing two major changes to street lighting technology: in lamp type, from high‐pressure sodium lamps to light‐emitting diodes, and in lighting regime, from full‐night (FN) to part‐night (PN) lighting. We predicted that lighting would reduce pollination. S. latifolia was pollinated both diurnally and nocturnally. Contrary to our predictions, flowers under FN lighting had higher pollination success than flowers under either PN lighting or unlit controls, which did not significantly differ from each other. Lamp type, lighting regime, and distance from the light all significantly affected aspects of pollination quality. These results confirm that street lighting could affect plant reproduction through indirect effects mediated by nocturnal insects, and further highlight the possibility for novel lighting technologies to mitigate the effects of ALAN on ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2174
Permanent link to this record
 

 
Author Firebaugh, A.; Haynes, K.J.
Title Multi‐year experiment shows no impact of artificial light at night on arthropod trophic structure or abundance Type Journal Article
Year 2020 Publication (up) Ecosphere Abbreviated Journal Ecosphere
Volume 11 Issue 8 Pages
Keywords Animals; Ecology
Abstract Prior studies of how artificial light at night (ALAN) alters the abundances of herbivores, predators, and other trophic groups have yielded evidence of the alteration of energy and nutrient flows through ecosystems. Because the impacts of ALAN on arthropod assemblages may be context‐dependent, there is a need for more experimental work across a range of habitat types and time frames. To examine longer‐term impacts of ALAN on community and trophic structure, we experimentally manipulated ALAN in a grassland ecosystem and compared arthropod abundance and trophic structure between plots exposed to ALAN and plots exposed only to ambient light over two years. In 2015, arthropod density was 61% higher in plots with ALAN added than in plots with no ALAN added, but this difference was not statistically significant. In 2016, arthropod densities were nearly identical between plots with ALAN added and plots not exposed to ALAN. Contrasting with prior research on ground‐dwelling arthropods, we found no evidence that the effects of ALAN on abundance differed between herbivores and predators inhabiting the canopy of grassland vegetation. To better understand the ecological consequences of ALAN, we recommend experimental manipulation of ALAN in a variety of habitat types followed by repeated sampling of trophic structure over time frames that span multiple generations for the species within the focal community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3104
Permanent link to this record
 

 
Author Lyytimäki, J.
Title Nature's nocturnal services: Light pollution as a non-recognised challenge for ecosystem services research and management Type Journal Article
Year 2013 Publication (up) Ecosystem Services Abbreviated Journal Ecosystem Services
Volume 3 Issue Pages e44-e48
Keywords Economics; Ecosystem disservices; Ecosystem services; Environmental management; Light pollution; Scotoecology; Shifting baselines
Abstract Research focusing on ecosystem services has tackled several of the major drivers of environmental degradation, but it suffers from a blind spot related to light pollution. Light pollution caused by artificial night-time lighting is a global environmental change affecting terrestrial, coastal and marine ecosystems. The long-term effects of the disruption of the natural cycles of light and dark on ecosystem functioning and ecosystem services are largely unknown. Even though additional research is clearly needed, identifying, developing and implementing stringent management actions aimed at reducing inadequately installed, unnecessary or excessive lighting are well justified. This essay argues that management is hampered, because ecosystem services from nocturnal nature are increasingly underappreciated by the public due to shifting baseline syndrome, making most people accustomed to constantly illuminated and light-polluted night environments. Increased attention from scientists, managers and the public is needed in order to explicate the best options for preserving the benefits from natural darkness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 433
Permanent link to this record
 

 
Author Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X.; Qiu, S.; Lv, Y.
Title Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams Type Journal Article
Year 2019 Publication (up) Ecotoxicology and Environmental Safety Abbreviated Journal Ecotoxicol Environ Saf
Volume in press Issue Pages 110014
Keywords Ecology; Microbes; Fungal communities and biodiversity; Illumina sequencing; Light pollution; Litter decomposition; Microbiological oxidation
Abstract Artificial light at night (ALAN, also known as light pollution) has been proved to be a contributor to environmental change and a biodiversity threat worldwide, yet little is known about its potential interaction with different metal pollutants, such as arsenic (As), one of the largest threats to aquatic ecosystems. To narrow this gap, an indoor microcosm study was performed using an ALAN simulation device to examine whether ALAN exposure altered the impact of arsenic on plant litter decomposition and its associated fungi. Results revealed that microbial decomposers involved in the conversion of As(III) to As(V), and ALAN exposure enhanced this effect; ALAN or arsenic only exposure altered fungal community composition and the correlations between fungi species, as well as stimulated or inhibited litter decomposition, respectively. The negative effects of arsenic on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN resulting in the enhanced photodegradation of leaf litter lignin and microbiological oxidation of As(III) to As(V), the increased microbial biomass and CBH activity, as well as the enhanced correlations between CBH and litter decomposition rate. Overall, results expand our understanding of ALAN on environment and highlight the contribution of ALAN to the toxicity of arsenic in aquatic ecosystems.
Address School of Pharmacy and Biological Sciences, Weifang Medical University, Weifang, 261053, China. Electronic address: njandgl@163.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0147-6513 ISBN Medium
Area Expedition Conference
Notes PMID:31810590 Approved no
Call Number GFZ @ kyba @ Serial 2777
Permanent link to this record