toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Haddock, J.K.; Threlfall, C.G.; Law, B.; Hochuli, D.F. url  doi
openurl 
  Title Light pollution at the urban forest edge negatively impacts insectivorous bats Type Journal Article
  Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 236 Issue Pages 17-28  
  Keywords Animals  
  Abstract Connectivity and quality of vegetation in cities, including urban forests, can promote urban biodiversity. However the impact of anthropogenic pressures at the forest-matrix edge, particularly artificial light at night (ALAN), on connectivity has received little attention. We assessed the influence of artificial light at forest edges on insectivorous bats. We acoustically surveyed 31 forest edges across greater Sydney, Australia, half with mercury vapour streetlights and half in ambient darkness, and compared the bat assemblage and activity levels to urban forest interiors. We also sampled the flying insect community to establish whether changes in insect densities under lights drive changes in insectivorous bat activity. We recorded 9965 bat passes from 16 species or species groups throughout our acoustic survey. The activity of all bats, and bats hypothesised to be sensitive to artificial light, was consistently higher in forest interiors as opposed to edges. We found that slower flying bats adapted to cluttered vegetation or with a relatively high characteristic echolocation call frequency; Chalinolobus morio, Miniopterus australis, Vespadelus vulturnus, and Nyctophilus spp., were negatively affected by artificial light sources at the forest edge. The emergence time of Vespadelus vulturnus was also significantly delayed by the presence of streetlights at the forest edge. Conversely, generalist faster flying bats; Chalinolobus gouldii, Ozimops ridei, Austronomous australis, Saccolaimus flaviventris, and Miniopterus orianae oceanensis, were unaffected by artificial light at the edge of urban forest, and used light and dark forest edges in a similar way. Insect surveys showed that larger lepidopterans seemed to be attracted to lit areas, but in low numbers. Artificial light sources on the edges of urban forest have diverse effects on bats and insects, and should be considered an anthropogenic edge effect that can reduce available habitat and decrease connectivity for light-sensitive species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2505  
Permanent link to this record
 

 
Author Owens, A. C. S., Cochard, P., Durrant, J., Farnworth, B., Perkin, E. K., &Seymoure, B. url  openurl
  Title Light Pollution Is a Driver of Insect Declines Type Journal Article
  Year 2019 Publication (up) Biological Conservation Abbreviated Journal  
  Volume Issue Pages in press  
  Keywords Ecology; Animals  
  Abstract Insects around the world are rapidly declining. Concerns over what this loss means for food security and ecological communities have compelled a growing number of researchers to search for the key drivers behind the decline. Habitat loss, pesticide use, invasive species, and climate change all have likely played a role, but we posit here that artificial light at night (ALAN) is another important — but often overlooked — bringer of the insect apocalypse. We first discuss the history and extent of ALAN, and then present evidence that ALAN has led to insect declines through its interference with the development, movement, foraging, and reproductive success of diverse insect species, as well as its positive effect on insectivore predation. We conclude with a discussion of how artificial lights can be tuned to reduce their impacts on vulnerable populations. ALAN is unique among anthropogenic habitat disturbances in that it is fairly easy to ameliorate, and leaves behind no residual effects. Greater recognition of the ways in which ALAN impacts insects can help conservationists reduce or eliminate one of the major drivers of insect declines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2649  
Permanent link to this record
 

 
Author Mendes, C.P.; Carreira, D.; Pedrosa, F.; Beca, G.; Lautenschlager, L.; Akkawi, P.; Bercê, W.; Ferraz, K.M.P.M.B.; Galetti, M. url  doi
openurl 
  Title Landscape of human fear in Neotropical rainforest mammals Type Journal Article
  Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation  
  Volume Issue Pages In press  
  Keywords Animals; Remote Sensing  
  Abstract The landscape of fear has profound effects on the species behavior, with most organisms engaging in risk avoidance behaviors in areas perceived as riskier. Most risk avoidance behaviors, such as temporal avoidance, have severe trade-offs between foraging efficiency and risk reduction. Human activities are able to affect the species landscape of fear, by increasing mortality of individuals (i.e. hunting, roadkill) and by disruption of the clues used by the species to estimate predation risk (e.g. light pollution). In this study, we used an extensive camera-trapping and night-time light satellite imagery to evaluate whether human activities affect the diel activity patterns of 17 species of rainforest dwelling mammals. We found evidence of diel activity shifts in eight of 17 analyzed species, in which five species become 21.6 % more nocturnal and three species become 11.7% more diurnal in high disturbed areas. This activity shifts were observed for both diurnal and nocturnal species. Persecuted species (game and predators) were more susceptible to present activity shifts. Since changes in foraging activity may affect species fitness, the behavior of humans’ avoidance may be another driver of the Anthropocene defaunation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2743  
Permanent link to this record
 

 
Author Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R. url  doi
openurl 
  Title The influence of artificial night at night and polarized light on bird-building collisions Type Journal Article
  Year 2020 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 241 Issue Pages 108358  
  Keywords Animals  
  Abstract Collisions with buildings annually kill up to 1 billion birds in the United States. Bird-building collisions primarily occur at glass surfaces: birds often fail to perceive glass as a barrier and appear to be attracted to artificial light emitted from windows. However, some aspects of avian vision are poorly understood, including how bird responses to different types of light influence building collisions. Some evidence suggests birds can detect polarized light, which may serve as a cue to assist with migration orientation and/or detect water bodies. Dark, reflective surfaces, including glass, reflect high degrees of polarized light, causing polarized light pollution (PLP). However, no studies have analyzed the relationship between bird collisions and PLP reflected from buildings. Additionally, while artificial light at night (ALAN) is frequently implicated as a major factor influencing bird-building collisions, few studies have analyzed this relationship. We investigated both types of light pollution—PLP and ALAN—and their association with bird collisions at 48 façades of 13 buildings in Minneapolis, Minnesota, USA. We found that the area of glass emitting ALAN was the most important factor influencing collisions, and that this effect of ALAN was independent of overall glass area; this result provides strong support for turning off lights at night to reduce bird-building collisions. Although we found no relationship between PLP and collisions, additional research is needed to better understand bird responses to polarized light. Fully understanding how different aspects of light influence bird-building collisions can inform conservation efforts to reduce this major threat to birds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2757  
Permanent link to this record
 

 
Author Bielli, A.; Alfaro-Shigueto, J.; Doherty, P.D.; Godley, B.J.; Ortiz, C.; Pasara, A.; Wang, J.H.; Mangel, J.C. url  doi
openurl 
  Title An illuminating idea to reduce bycatch in the Peruvian small-scale gillnet fishery Type Journal Article
  Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation  
  Volume Issue Pages in press  
  Keywords Animals  
  Abstract Found in the coastal waters of all continents, gillnets are the largest component of small-scale fisheries for many countries. Numerous studies show that these fisheries often have high bycatch rates of threatened marine species such as sea turtles, small cetaceans and seabirds, resulting in possible population declines of these non-target groups. However, few solutions to reduce gillnet bycatch have been developed. Recent bycatch reduction technologies (BRTs) use sensory cues to alert non-target species to the presence of fishing gear. In this study we deployed light emitting diodes (LEDs) – a visual cue – on the floatlines of paired gillnets (control vs illuminated net) during 864 fishing sets on small-scale vessels departing from three Peruvian ports between 2015 and 2018. Bycatch probability per set for sea turtles, cetaceans and seabirds as well as catch per unit effort (CPUE) of target species were analysed for illuminated and control nets using a generalised linear mixed-effects model (GLMM). For illuminated nets, bycatch probability per set was reduced by up to 74.4 % for sea turtles and 70.8 % for small cetaceans in comparison to non-illuminated, control nets. For seabirds, nominal BPUEs decreased by 84.0 % in the presence of LEDs. Target species CPUE was not negatively affected by the presence of LEDs. This study highlights the efficacy of net illumination as a multi-taxa BRT for small-scale gillnet fisheries in Peru. These results are promising given the global ubiquity of small-scale net fisheries, the relatively low cost of LEDs and the current lack of alternate solutions to bycatch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2779  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: