|   | 
Details
   web
Records
Author Seymoure, B. M., Linares, C., & White, J.
Title Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms Type Journal Article
Year 2019 Publication Journal of Zoology Abbreviated Journal
Volume 308 Issue 2 Pages 93-110
Keywords Animals; Ecology; color space; ecological consequences; just noticeable difference; light pollution; photoreceptors; radiance; visual models; visual systems
Abstract Humans have drastically altered nocturnal environments with electric lighting. Animals depend on natural night light conditions and are now being inundated with artificial lighting. There are numerous artificial light sources that differ in spectral composition that should affect the perception of these light sources and due to differences in animal visual systems, the differences in color perception of these anthropogenic light sources should vary significantly. The ecological and evolutionary ramifications of these perceptual differences of light sources remain understudied. Here, we quantify the radiance of nine different street lights comprised of four different light sources: Metal Halide, Mercury Vapor, Light Emitting Diodes, and High‐Pressure Sodium and model how five animal visual systems will be stimulated by these light sources. We calculated the number of photons that photoreceptors in different visual systems would detect. We selected five visual systems: avian UV/VIS, avian V/VIS, human, wolf and hawk moth. We included non‐visual photoreceptors of vertebrates known for controlling circadian rhythms and other physiological traits. The nine light types stimulated visual systems and the photoreceptors within the visual systems differently. Furthermore, we modelled the chromatic contrast (Just Noticeable Differences [JNDs]) and color space overlap for each light type comparison for each visual system to see if organisms would perceive the lights as different colors. The JNDs of most light type comparisons were very high, indicating most visual systems would detect all light types as different colors, however mammalian visual systems would perceive many lights as the same color. We discuss the importance of understanding not only the brightness of artificial light types, but also the spectral composition of light types, as most organisms have different visual systems from humans. Thus, for researchers to understand how artificial light sources affect the visual environment of specific organisms and thus mitigate the effects, spectral information is crucial.
Address Department of Biology, Colorado State University, Fort Collins, CO, USA; brett.seymoure(at)gmail.com
Corporate Author Thesis
Publisher (down) ZSL Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2306
Permanent link to this record
 

 
Author Minnaar, C.; Boyles, J.G.; Minnaar, I.A.; Sole, C.L.; McKechnie, A.E.; McKenzie, A.
Title Stacking the odds: light pollution may shift the balance in an ancient predator-prey arms race Type Journal Article
Year 2014 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume 52 Issue 2 Pages 522-531
Keywords Ecology; animals; bats; insects; predation; Neoromicia capensis; moths; Cape serotine bat; co-evolution; eared moth; Lepidoptera; predator–prey interactions; prey selection
Abstract 1. Artificial night lighting threatens to disrupt strongly conserved light-dependent processes in animals and may have cascading effects on ecosystems as species interactions become altered. Insectivorous bats and their prey have been involved in a nocturnal, co-evolutionary arms race for millions of years. Lights may interfere with anti-bat defensive behaviours in moths, and disrupt a complex and globally ubiquitous interaction between bats and insects, ultimately leading to detrimental consequences for ecosystems on a global scale.

2. We combined experimental and mathematical approaches to determine effects of light pollution on a free-living bat–insect community. We compared prey selection by Cape serotine bats Neoromicia capensis in naturally unlit and artificially lit conditions using a manipulative field experiment, and developed a probabilistic model based on a suite of prey-selection factors to explain differences in observed diet.

3.Moth consumption by N. capensis was low under unlit conditions (mean percentage volume ± SD: 5·91 ± 6·25%), while moth consumption increased sixfold (mean percentage volume ± SD: 35·42 ± 17·90%) under lit conditions despite a decrease in relative moth abundance. Predictive prey-selection models that included high-efficacy estimates for eared-moth defensive behaviour found most support given diet data for bats in unlit conditions. Conversely, models that estimated eared-moth defensive behaviour as absent or low found more support given diet data for bats in lit conditions. Our models therefore suggest the increase in moth consumption was a result of light-induced, decreased eared-moth defensive behaviour.

4. Policy implications. In the current context of unyielding growth in global light pollution, we predict that specialist moth-eating bats and eared moths will face ever-increasing challenges to survival through increased resource competition and predation risk, respectively. Lights should be developed to be less attractive to moths, with the goal of reducing effects on moth behaviour. Unfortunately, market preference for broad-spectrum lighting and possible effects on other taxa make development of moth-friendly lighting improbable. Mitigation should therefore focus on the reduction of temporal, spatial and luminance redundancy in outdoor lighting. Restriction of light inside nature reserves and urban greenbelts can help maintain dark refugia for moth-eating bats and moths, and may become important for their persistence.
Address Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
Corporate Author Thesis
Publisher (down) Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @; IDA @ john @ Serial 1085
Permanent link to this record
 

 
Author Davies, T.W.; Bennie, J.; Cruse, D.; Blumgart, D.; Inger, R.; Gaston, K.J.
Title Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages Type Journal Article
Year 2017 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 23 Issue 7 Pages 2641-2648
Keywords Ecology; grasslands; LED
Abstract White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naive grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether.
Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
Corporate Author Thesis
Publisher (down) Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:28139040 Approved no
Call Number LoNNe @ kyba @ Serial 1634
Permanent link to this record
 

 
Author Entwistle, J.; Slater, D.
Title Making space for 'the social': connecting sociology and professional practices in urban lighting design Type Journal Article
Year 2019 Publication The British Journal of Sociology Abbreviated Journal Br J Sociol
Volume 70 Issue 5 Pages 2020-2041
Keywords Sociology; Society; Lighting
Abstract Lighting is increasingly recognized as a significant social intervention by both lighting professionals and academic social scientists. However, what counts as 'the social' is diverse and contested, with consequences for what kind of 'social' is performed or invented. Based on a long-term research programme, we argue that collaboration between sociologists and lighting professionals requires negotiating discourses and practices of 'the social'. This paper explores the quality and kinds of spaces made for 'the social' in professional practices and academic collaborations, focusing on two case studies of urban lighting that demonstrate how the space of 'the social' is constrained and impoverished by an institutionalized division between technical and aesthetic lighting. We consider the potential role of sociologists in making more productive spaces for 'the social' in urban design, as part of the central sociological task of 'inventing the social' (Marres, Guggenheim and Wilkie 2018) in the process of studying it.
Address Department of Sociology, London School of Economics; d.slater(at)lse.ac.uk
Corporate Author Thesis
Publisher (down) Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0007-1315 ISBN Medium
Area Expedition Conference
Notes PMID:30864152 Approved no
Call Number GFZ @ kyba @ Serial 2265
Permanent link to this record
 

 
Author Kim, K.‐N.; Sin, U.‐C.; Jo, Y.‐C.; Huang, Z.‐J.; Hassan, A.; Huang, Q.‐Y.; Lei, C.‐L.
Title Influence of green light at night on Juvenile hormone in the oriental armyworm Mythimna separata (Lepidoptera: Noctuidae) Type Journal Article
Year 2019 Publication Physiological Entomology Abbreviated Journal Physiol. Entomol.
Volume 44 Issue 3-4 Pages 245-251
Keywords Animals; armyworm; Mythimna separata; Insects; Asia; green light
Abstract The oriental armyworm Mythimna separata is an agricultural insect pest in Eastern Asia. Mythimna separata moths have a high phototactic response to green (520 nm) light. The biological characteristics of insects living under light of a specific wavelength at night can change and, accordingly, Juvenile hormone (JH) levels may be influenced by this light. The present study evaluates changes in the total JH levels at different developmental stages (larvae, pupae and adults) of M. separata reared under green light with different exposure periods at night (or dark period). The results show that, when the exposure time per day of the green light at night is extended, the JH levels in the final‐instar larvae (22 days) and older age pupae (8 days) are significantly reduced, and the JH levels in earlier age pupae (4 days) and adults (3, 6 and 9 days) are significantly increased, compared with groups not exposed to green light. Additionally, the JH level of male moths significantly differs from that of the female moths. We suggest that the JH level of M. separata insects could be regulated by the green light at night (or dark period). The findings of the present study will help to explain the relationship between the light environment and biological characteristics in nocturnal moths.
Address Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; ioir(at)mail.hzau.edu.cn
Corporate Author Thesis
Publisher (down) Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0307-6962 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2596
Permanent link to this record