toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kim, K.-M.; Kim, Y.-W.; Oh, S.-T.; Lim, J.-H. url  doi
openurl 
  Title Development of a natural light reproduction system for maintaining the circadian rhythm Type Journal Article
  Year 2019 Publication Indoor and Built Environment Abbreviated Journal Indoor and Built Environment  
  Volume in press Issue Pages 1420326X19855421  
  Keywords Lighting; Human Health; Circadian Rhythm; indoor light  
  Abstract Circadian rhythm is linked to sleep, arousal and human health overall, affecting body temperature and heart rate. A 24-h natural-light cycle provides optimum lighting environment for humans. However, as people increasingly stay indoors with artificial lighting, lacking periodic characteristics, imbalance in the circadian rhythm ensues. Previous lighting-related studies to resolve such problem partially provided the colour temperatures of natural light but failed to reproduce the 24-h periodic characteristics of it. This study proposes a natural light-reproducing system that provides the daylight cycle characteristics of natural light in order to maintain the circadian rhythm. Natural light was measured through an optical measurement equipment, while the characteristics (colour temperature and short-wavelength ratio) of natural light by season and time were analysed. Subsequently, the control indicator of seasonal and hourly lighting was extracted and applied to the light-emitting diode lighting to provide lighting service, executing a daylight cycle that reflects the characteristics of natural light. After the sunset, especially, the circadian rhythm was maintained by minimizing the short-wavelength ratio of the lighting while maintaining indoor illumination.  
  Address Department of Computer Science & Engineering, Kongju National University, Cheonan-si, South Korea  
  Corporate Author Thesis  
  Publisher (down) Sage Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-326X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2591  
Permanent link to this record
 

 
Author Kronauer, R.E.; St Hilaire, M.A.; Rahman, S.A.; Czeisler, C.A.; Klerman, E.B. url  doi
openurl 
  Title An Exploration of the Temporal Dynamics of Circadian Resetting Responses to Short- and Long-Duration Light Exposures: Cross-Species Consistencies and Differences Type Journal Article
  Year 2019 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 34 Issue 5 Pages 497-514  
  Keywords Animals; Human Health  
  Abstract Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting-based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a “dead zone” of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.  
  Address Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts  
  Corporate Author Thesis  
  Publisher (down) Sage Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31368391 Approved no  
  Call Number GFZ @ kyba @ Serial 2600  
Permanent link to this record
 

 
Author Aubé, M. url  doi
openurl 
  Title Physical behaviour of anthropogenic light propagation into the nocturnal environment Type Journal Article
  Year 2015 Publication Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences Abbreviated Journal Philos Trans R Soc Lond B Biol Sci  
  Volume 370 Issue Pages 20140117  
  Keywords Skyglow; artificial light at night; light pollution; radiative transfer; atmospheric effects; scattering; methods; numerical; sensitivity analysis  
  Abstract Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005: Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane.  
  Address Département de physique, Cégep de Sherbrooke, Sherbrooke, Quebec, Canada  
  Corporate Author Thesis  
  Publisher (down) Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title The biological impacts of artificial light at night: from molecules to communities Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1115  
Permanent link to this record
 

 
Author Wakefield, A.; Stone, E.L.; Jones, G.; Harris, S. url  doi
openurl 
  Title Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls Type Journal Article
  Year 2015 Publication Royal Society Open Science Abbreviated Journal Roy. Soc. Open Sci.  
  Volume 2 Issue 8 Pages  
  Keywords Animals; artificial lighting; light-emitting diode; street lights; bats; moth predation; Nyctalus  
  Abstract The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats.  
  Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK  
  Corporate Author Thesis  
  Publisher (down) Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1237  
Permanent link to this record
 

 
Author Ouyang, J.Q; Maaike de Jong, M.H.; Visser, M.E.; van Grunsven, R.H.A.; Ouyang, J.Q url  openurl
  Title Stressful colours: corticosterone concentrations in a free-living songbird vary with the spectral composition of experimental illumination Type Journal Article
  Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 11 Issue Pages 20150517  
  Keywords Animals; birds; corticosterone; stress; Parus major; great tit; artificial light; light spectra  
  Abstract Organisms have evolved under natural daily light/dark cycles for millions of years. These cycles have been disturbed as night-time darkness is increasingly replaced by artificial illumination. Investigating the physiological consequences of free-living organisms in artificially lit environments is crucial to determine whether nocturnal lighting disrupts circadian rhythms, changes behaviour, reduces fitness and ultimately affects population numbers. We make use of a unique, large-scale network of replicated field sites which were experimentally illuminated at night using lampposts emanating either red, green, white or no light to test effect on stress hormone concentrations (corticosterone) in a songbird, the great tit (Parus major). Adults nesting in white-light transects had higher corticosterone concentrations than in the other treatments. We also found a significant interaction between distance to the closest lamppost and treatment type: individuals in red light had higher corticosterone levels when they nested closer to the lamppost than individuals nesting farther away, a decline not observed in the green or dark treatment. Individuals with high corticosterone levels had fewer fledglings, irrespective of treatment. These results show that artificial light can induce changes in individual hormonal phenotype. As these effects vary considerably with light spectrum, it opens the possibility to mitigate these effects by selecting street lighting of specific spectra.  
  Address Department of Animal Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands; j.ouyang(at)nioo.knaw.nl  
  Corporate Author Thesis  
  Publisher (down) Royal Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1248  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: