|   | 
Details
   web
Records
Author Wang, H.-B.; Whittaker, D.S.; Truong, D.; Mulji, A.K.; Ghiani, C.A.; Loh, D.H.; Colwell, C.S.
Title Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease Type Journal Article
Year 2017 Publication Neurobiology of Sleep and Circadian Rhythms Abbreviated Journal Neurobiology of Sleep and Circadian Rhythms
Volume 2 Issue Pages 39-52
Keywords animals; Human Health
Abstract Patients with Huntington's disease (HD) exhibit movement disorders, psychiatric disturbance and cognitive impairments as the disease progresses. Abnormal sleep/wake cycles are common among HD patients with reports of delayed sleep onset, fatigue during the day, and a delayed pattern of melatonin secretion all of which suggest circadian dysfunction. Mouse models of HD confirm disrupted circadian rhythms with pathophysiology found in the central circadian clock (suprachiasmatic nucleus). Importantly, circadian dysfunction manifests early in disease, even before the classic motor symptoms, in both patients and mouse models. Therefore, we hypothesize that the circadian dysfunction may interact with the disease pathology and exacerbate the HD symptoms. If correct, early intervention may benefit patients and delay disease progression. One test of this hypothesis is to determine whether light therapy designed to strengthen this intrinsic timing system can delay the disease progression in mouse models. Therefore, we determined the impact of blue wavelength-enriched light on two HD models: the BACHD and Q175 mice. Both models received 6 hours of blue-light at the beginning of their daily light cycle for 3 months. After treatment, both genotypes showed improvements in their locomotor activity rhythm without significant change to their sleep behavior. Critically, treated mice of both lines exhibited improved motor performance compared to untreated controls. Focusing on the Q175 genotype, we sought to determine whether the treatment altered signaling pathways in brain regions known to be impacted by HD using NanoString gene expression assays. We found that the expression of several HD relevant markers was altered in the striatum and cortex of the treated mice. Our study demonstrates that strengthening the circadian system can delay the progression of HD in pre-clinical models. This work suggests that lighting conditions should be considered when managing treatment of HD and other neurodegenerative disorders.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9944 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1626
Permanent link to this record
 

 
Author Rodriguez, A.; Holmes, N.D.; Ryan, P.G.; Wilson, K.-J.; Faulquier, L.; Murillo, Y.; Raine, A.F.; Penniman, J.; Neves, V.; Rodriguez, B.; Negro, J.J.; Chiaradia, A.; Dann, P.; Anderson, T.; Metzger, B.; Shirai, M.; Deppe, L.; Wheeler, J.; Hodum, P.; Gouveia, C.; Carmo, V.; Carreira, G.P.; Delgado-Alburqueque, L.; Guerra-Correa, C.; Couzi, F.-X.; Travers, M.; Le Corre, M.
Title A global review of seabird mortality caused by land-based artificial lights Type Journal Article
Year 2017 Publication Conservation Biology : the Journal of the Society for Conservation Biology Abbreviated Journal Conserv Biol
Volume 31 Issue 5 Pages 986-1001
Keywords Animals; Ecology
Abstract Artificial lights at night cause high mortality of seabirds, one of the most endangered groups of birds globally. Fledglings of burrow-nesting seabirds, and to a lesser extent adults, are grounded by lights when they fly at night. We review the current state of knowledge of light attraction, identify information gaps and propose measures to address the problem. Although other avian families such as Alcidae and Anatidae can be involved, the most affected seabirds are petrels and shearwaters: at least 56 species, more than one-third of them (24) threatened, are grounded by lights. Grounded seabirds have been found worldwide, mainly on oceanic islands but also at some continental locations. Petrel breeding grounds confined to formerly uninhabited islands are particularly at risk from ever-growing levels of light pollution due to tourism and urban sprawl. Where it is impractical to ban external lights, rescue programs of grounded birds offer the most immediate and extended mitigation measures to reduce light-induced mortality, saving thousands of birds every year. These programs also provide useful information for seabird management. However, the data typically are fragmentary and often strongly biased so the phenomenon is poorly understood, leading to inaccurate impact estimates. We identified as the most urgent priority actions: 1) estimation of mortality and impact on populations; 2) assessment of threshold light levels and safe distances from light sources; 3) documenting the fate of rescued birds; 4) improvement of rescue campaigns, particularly in terms of increasing recovery rates and level of care; and 5) research on seabird-friendly lights to reduce attraction. More research is necessary to improve our understanding of this human-wildlife conflict and to design effective management and mitigation measures. This article is protected by copyright. All rights reserved.
Address UMR ENTROPIE, Universite de la Reunion 15, avenue Rene Cassin – CS 92003 97744 Saint Denis Cedex 9, La Reunion, France
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0888-8892 ISBN Medium
Area Expedition Conference
Notes PMID:28151557 Approved no
Call Number LoNNe @ kyba @ Serial 1632
Permanent link to this record
 

 
Author Stothard, E.R.; McHill, A.W.; Depner, C.M.; Birks, B.R.; Moehlman, T.M.; Ritchie, H.K.; Guzzetti, J.R.; Chinoy, E.D.; LeBourgeois, M.K.; Axelsson, J.; Wright, K.P.J.
Title Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend Type Journal Article
Year 2017 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 27 Issue 4 Pages 508-513
Keywords Human Health
Abstract Reduced exposure to daytime sunlight and increased exposure to electrical lighting at night leads to late circadian and sleep timing [1-3]. We have previously shown that exposure to a natural summer 14 hr 40 min:9 hr 20 min light-dark cycle entrains the human circadian clock to solar time, such that the internal biological night begins near sunset and ends near sunrise [1]. Here we show that the beginning of the biological night and sleep occur earlier after a week's exposure to a natural winter 9 hr 20 min:14 hr 40 min light-dark cycle as compared to the modern electrical lighting environment. Further, we find that the human circadian clock is sensitive to seasonal changes in the natural light-dark cycle, showing an expansion of the biological night in winter compared to summer, akin to that seen in non-humans [4-8]. We also show that circadian and sleep timing occur earlier after spending a weekend camping in a summer 14 hr 39 min:9 hr 21 min natural light-dark cycle compared to a typical weekend in the modern environment. Weekend exposure to natural light was sufficient to achieve approximately 69% of the shift in circadian timing we previously reported after a week's exposure to natural light [1]. These findings provide evidence that the human circadian clock adapts to seasonal changes in the natural light-dark cycle and is timed later in the modern environment in both winter and summer. Further, we demonstrate that earlier circadian timing can be rapidly achieved through natural light exposure during a weekend spent camping.
Address Department of Integrative Physiology, Sleep and Chronobiology Laboratory, University of Colorado Boulder, Boulder, CO 80309-0354, USA. Electronic address: kenneth.wright@colorado.edu
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:28162893 Approved no
Call Number LoNNe @ kyba @ Serial 1633
Permanent link to this record
 

 
Author Persons, W.E.; Eason, P.
Title Human activity and habitat type affect perceived predation risk in urban white-footed mice (Peromyscus leucopus) Type Journal Article
Year 2017 Publication Ethology Abbreviated Journal Ethology
Volume 123 Issue 5 Pages 348-356
Keywords Animals
Abstract Predation risk is one of the largest costs associated with foraging in small mammals. Small mammals select microhabitat features such as tree and shrub canopy cover, woody debris and vegetative ground cover that can lower the risk of detection from predators and provide greater protection if discovered. Small mammals also increase foraging activity and decrease selection for cover when cloud cover increases and moon illumination is less. Often researchers assume small mammals in urban areas respond to these cues in the same manner as in natural areas, but these cues themselves are altered in urban zones. In this study, we investigated how Amur honeysuckle (Lonicera maackii) and coarse woody debris (CWD) affected giving-up density (GUD) in white-footed mice (Peromyscus leucopus). Each of three habitat treatments (open flood channel, the edge and interior of the honeysuckle patch) contained cover treatments with coarse woody debris present or absent. The six treatment combinations were compared to environmental variables (temperature, humidity and illumination) and habitat variables to test their effect on GUD. Peromyscus leucopus foraged to lower densities in areas with CWD present and also under the honeysuckle canopy, using this invasive shrub to decrease predation risk, potentially increasing survivability within this urban park. Increased human presence negatively affected foraging behavior across treatments. Human presence and light pollution significantly influenced P. leucopus, modifying their foraging behavior and demonstrating that both fine- and coarse-scale urban factors can affect small mammals. Foraging increased as humidity increased, particularly under the honeysuckle canopy. Changes in illumination due to moonlight and cloud cover did not affect foraging behavior, suggesting urban light pollution may have altered behavioral responses to changes in light levels. Lonicera maackii seemed to facilitate foraging in P. leucopus, even though it adversely affects the plant community, suggesting that its impact may not be entirely negative.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0179-1613 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1642
Permanent link to this record
 

 
Author Li, C.; Li, G.; Zhu, Y.; Ge, Y.; Kung, H.-te; Wu, Y.
Title A likelihood-based spatial statistical transformation model (LBSSTM) of regional economic development using DMSP/OLS time series and nighttime light imagery Type Journal Article
Year 2017 Publication Spatial Statistics Abbreviated Journal Spatial Statistics
Volume 21 Issue B Pages 421-439
Keywords Remote Sensing
Abstract In a regional economy, the central city of a metropolitan area has a radiative effect and an accumulative effect on its surrounding cities. Considering the limitations of traditional data sources (e.g., its subjectivity) and the advantages of nighttime light data, including its objectivity, availability and cyclicity, this paper proposes a likelihood spatial statistical transformation model (LBSSTM) to invert for the gross domestic product (GDP) of the surrounding cities, using time series of Sum of Lights (SOL) data covering the central city and taking advantage of the economic and spatial association between the central city and the surrounding cities within a metropolitan area and the correlation between SOL and GDP. The Wuhan Metropolitan Area is chosen to verify the model using time series analysis and exploratory spatial data analysis (ESDA). The experimental results show the feasibility of the proposed LBSSTM. The prediction accuracy of our model is verified by cross-validation using data from 1998, 2004 and 2011, based on the 3σ rule. This model can quantitatively express the agglomeration and diffusion effect of the central city and reveal the spatial pattern of this effect. The results of this work are potentially useful in making spatio-temporal economic projections and filling in missing data from some regions, as well as gaining a deeper quantitative and spatio-temporal understanding of the laws underlying regional economic development.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-6753 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1644
Permanent link to this record