|   | 
Details
   web
Records
Author Liu, Q.; Sha, D.; Liu, W.; Houser, P.; Zhang, L.; Hou, R.; Lan, H.; Flynn, C.; Lu, M.; Hu, T.; Yang, C.
Title Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 10 Pages 1576
Keywords Remote Sensing
Abstract The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and daily and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm−2 · sr−1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3202
Permanent link to this record
 

 
Author Ghosh, T.; Elvidge, C.D.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M.
Title The Dimming of Lights in India during the COVID-19 Pandemic Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 20 Pages 3289
Keywords Remote Sensing; COVID
Abstract The monthly Suomi National Polar-orbiting (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day–Night Band (DNB) composite reveals the dimming of lights as an effect of the lockdown enforced by the government of India in response to the COVID-19 pandemic. The changes in lighting are examined by creating difference maps of a pre-pandemic pair and comparing it with two pandemic pairs. The visual raster difference maps are substantiated with quantitative analysis showing the proportion of population affected by the changes in the lighting brightness levels. In the pre-pandemic images of February and March 2019, 60% of the population lived in administrative units that became brighter in March 2019. However, in the first pandemic pair, 87% of the population lived in administrative units that became dimmer in March 2020 after the lockdown in comparison to February 2020. The nightly DNB profile at the airport in Delhi illustrate how the dimming of lights coincide with the date of the onset of the lockdown (in March 2020). The study shows the usefulness of the DNB nightly and monthly composites in examining economic impacts of the pandemic as countries throughout the world go through economic declines and move towards recovery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3201
Permanent link to this record
 

 
Author Zou, C.-Z.; Zhou, L.; Lin, L.; Sun, N.; Chen, Y.; Flynn, L.E.; Zhang, B.; Cao, C.; Iturbide-Sanchez, F.; Beck, T.; Yan, B.; Kalluri, S.; Bai, Y.; Blonski, S.; Choi, T.; Divakarla, M.; Gu, Y.; Hao, X.; Li, W.; Liang, D.; Niu, J.; Shao, X.; Strow, L.; Tobin, D.C.; Tremblay, D.; Uprety, S.; Wang, W.; Xu, H.; Yang, H.; Goldberg, M.D.
Title The Reprocessed Suomi NPP Satellite Observations Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 18 Pages 2891
Keywords Instrumentation; Remote Sensing
Abstract The launch of the National Oceanic and Atmospheric Administration (NOAA)/ National Aeronautics and Space Administration (NASA) Suomi National Polar-orbiting Partnership (S-NPP) and its follow-on NOAA Joint Polar Satellite Systems (JPSS) satellites marks the beginning of a new era of operational satellite observations of the Earth and atmosphere for environmental applications with high spatial resolution and sampling rate. The S-NPP and JPSS are equipped with five instruments, each with advanced design in Earth sampling, including the Advanced Technology Microwave Sounder (ATMS), the Cross-track Infrared Sounder (CrIS), the Ozone Mapping and Profiler Suite (OMPS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and the Clouds and the Earth’s Radiant Energy System (CERES). Among them, the ATMS is the new generation of microwave sounder measuring temperature profiles from the surface to the upper stratosphere and moisture profiles from the surface to the upper troposphere, while CrIS is the first of a series of advanced operational hyperspectral sounders providing more accurate atmospheric and moisture sounding observations with higher vertical resolution for weather and climate applications. The OMPS instrument measures solar backscattered ultraviolet to provide information on the concentrations of ozone in the Earth’s atmosphere, and VIIRS provides global observations of a variety of essential environmental variables over the land, atmosphere, cryosphere, and ocean with visible and infrared imagery. The CERES instrument measures the solar energy reflected by the Earth, the longwave radiative emission from the Earth, and the role of cloud processes in the Earth’s energy balance. Presently, observations from several instruments on S-NPP and JPSS-1 (re-named NOAA-20 after launch) provide near real-time monitoring of the environmental changes and improve weather forecasting by assimilation into numerical weather prediction models. Envisioning the need for consistencies in satellite retrievals, improving climate reanalyses, development of climate data records, and improving numerical weather forecasting, the NOAA/Center for Satellite Applications and Research (STAR) has been reprocessing the S-NPP observations for ATMS, CrIS, OMPS, and VIIRS through their life cycle. This article provides a summary of the instrument observing principles, data characteristics, reprocessing approaches, calibration algorithms, and validation results of the reprocessed sensor data records. The reprocessing generated consistent Level-1 sensor data records using unified and consistent calibration algorithms for each instrument that removed artificial jumps in data owing to operational changes, instrument anomalies, contaminations by anomaly views of the environment or spacecraft, and other causes. The reprocessed sensor data records were compared with and validated against other observations for a consistency check whenever such data were available. The reprocessed data will be archived in the NOAA data center with the same format as the operational data and technical support for data requests. Such a reprocessing is expected to improve the efficiency of the use of the S-NPP and JPSS satellite data and the accuracy of the observed essential environmental variables through either consistent satellite retrievals or use of the reprocessed data in numerical data assimilations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3200
Permanent link to this record
 

 
Author Jokiel, P.L.; Ito, R.Y.; Liu, P.M.
Title Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis Type Journal Article
Year 1985 Publication Marine Biology Abbreviated Journal Mar. Biol.
Volume 88 Issue 2 Pages 167-174
Keywords Animals
Abstract Pocillopora damicornis (Linnaeus), which is known to release planula larvae on a monthly cycle, was grown in full daytime solar irradiance, but with four treatments of night irradiance: (1) natural night irradiance, (2) shifted-phase (total darkness during nights of full moon with artificial irradiance at lunar intensity on nights of new moon), (3) constant full moon (full lunar irradiance every night), and (4) constant new moon (total darkness every night). The reproductive cycle of the corals held in the “shifted-phase” treatment moved out of synchrony with the cycle of corals exposed to a natural lunar cycle of night irradiance. Two previously described “types” of P. damicornis were tested. The “Type Y” normally start releasing larvae at full moon, with peak production at third quarter. In the shifted-phase treatment they began releasing planulae at new moon (artificial full moon), with peak production at first quarter. The “Type B” corals, that normally start releasing planulae at new moon with peak production at first quarter, began to release planulae at full moon (artificial new moon), with peak production at third quarter. Populations of corals grown either in the constant full moon or constant new moon treatment quickly lost synchronization of monthly larva production, although production of planulae continued. Thus spawning is synchronized by night irradiance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-3162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3199
Permanent link to this record
 

 
Author Aubrecht, C.; Elvidge, C.D.; Longcore, T.; Rich, C.; Safran, J.; Strong, A.E.; Eakin, C.M.; Baugh, K.E.; Tuttle, B.T.; Howard, A.T.; Erwin, E.H.
Title A global inventory of coral reef stressors based on satellite observed nighttime lights Type Journal Article
Year 2008 Publication Geocarto International Abbreviated Journal Geocarto International
Volume 23 Issue 6 Pages 467-479
Keywords Animals; Remote Sensing
Abstract In this article, we present a satellite-based approach to gather information about the threat to coral reefs worldwide. Three chosen reef stressors – development, gas flaring and heavily lit fishing boat activity – are analysed using nighttime lights data derived from the Defense Meteorological Satellite Program (DMSP) produced at the National Oceanic & Atmospheric Administration, National Geophysical Data Center (NOAA/NGDC). Nighttime lights represent a direct threat to coral reef ecosystems and are an excellent proxy measure for associated human-caused stressors. A lights proximity index (LPI) is calculated, measuring the distance of coral reef sites to each of the stressors and incorporating the stressor's intensity. Colourized maps visualize the results on a global scale. Area rankings clarify the effects of artificial night lighting on coral reefs on a regional scale. The results should be very useful for reef managers and for state administrations to implement coral reef conservation projects and for the scientific world to conduct further research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1010-6049 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial (down) 3198
Permanent link to this record