toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tossa, P.; Souques, M. url  doi
openurl 
  Title Effects of artificial light at night and light pollution on human circadian rhythms Type Journal Article
  Year 2019 Publication Environnement Risques Santé Abbreviated Journal  
  Volume 18 Issue 6 Pages 477-487  
  Keywords Reveiw; Human Health  
  Abstract Artificial light is a tangible manifestation of economic and social development, as well as a response to certain needs, especially comfort and civil and road safety. However, this use has been so associated with technological progress that its invasion of daily life has been almost imperceptible. With the recent increase in night lighting (11 million light points in 2016 according to the French Agency for the Environment and Energy Management) and the production of new lamp technologies (in particular light-emitting diodes or LEDs), societal concerns have emerged and are growing. These concerns include light pollution and the impact of blue light on human health and the environment. The scientific community has also taken up the subject, publishing in recent years a large and ever-increasing number of articles on the effects of artificial light at night on fauna and flora as well as on human health. In this review, we propose a synthesis of knowledge on human health effects of light based on scientific reports and an update of recent scientific production.

This review updates knowledge of the chronobiological effects of light at night, particularly blue light. We also briefly describe the potential beneficial effects of light on well-being.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1635-0421 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2806  
Permanent link to this record
 

 
Author Dominoni, D.M.; Kjellberg Jensen, J.; de Jong, M.; Visser, M.E.; Spoelstra, K. url  doi
openurl 
  Title Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird Type Journal Article
  Year 2019 Publication Ecological Applications : a Publication of the Ecological Society of America Abbreviated Journal Ecol Appl  
  Volume Issue Pages in press  
  Keywords Animals; Parus major; Alan; light pollution; phenology; timing of reproduction; urbanization  
  Abstract The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg-laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the great tit (Parus major), using a replicated experimental setup where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg-laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light versus the dark treatment, and similar trends for red light. However, there was a strong inter-annual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg-laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.  
  Address Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-0761 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31863538 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2805  
Permanent link to this record
 

 
Author Wood, J.M.; Tyrrell, R.A.; Carberry, T.P. url  doi
openurl 
  Title Limitations in drivers' ability to recognize pedestrians at night Type Journal Article
  Year 2005 Publication Human Factors Abbreviated Journal Hum Factors  
  Volume 47 Issue 3 Pages 644-653  
  Keywords Vision; Public Safety; Adult; Age Factors; Aged; *Automobile Driving/psychology; Clothing; *Darkness; Female; Humans; Male; Middle Aged; Reaction Time; Task Performance and Analysis; Visual Perception  
  Abstract This study quantified drivers' ability to recognize pedestrians at night. Ten young and 10 older participants drove around a closed road circuit and responded when they first recognized a pedestrian. Four pedestrian clothing and two beam conditions were tested. Results demonstrate that driver age, clothing configuration, headlamp beam, and glare all significantly affect performance. Drivers recognized only 5% of pedestrians in the most challenging condition (low beams, black clothing, glare), whereas drivers recognized 100% of the pedestrians who wore retroreflective clothing configured to depict biological motion (no glare). In the absence of glare, mean recognition distances varied from 0.0 m (older drivers, low beam, black clothing) to 220 m (722 feet; younger drivers, high beam, retroreflective biomotion). These data provide new motivation to minimize interactions between vehicular and pedestrian traffic at night and suggest garment designs to maximize pedestrian conspicuity when these interactions are unavoidable.  
  Address Center for Eye Research, Queensland University of Technology, Brisbane, Australia. j.wood@qut.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-7208 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16435703 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2804  
Permanent link to this record
 

 
Author Wood, J.M. url  doi
openurl 
  Title Nighttime driving: visual, lighting and visibility challenges Type Journal Article
  Year 2019 Publication Ophthalmic & Physiological Optics : the Journal of the British College of Ophthalmic Opticians (Optometrists) Abbreviated Journal Ophthalmic Physiol Opt  
  Volume Issue Pages in press  
  Keywords Review; Public Safety; headlights; nighttime driving; older drivers; pedestrians and cyclists; streetlights; visual performance  
  Abstract PURPOSE: Nighttime driving is dangerous and is one of the most challenging driving situations for most drivers. Fatality rates are higher at night than in the day when adjusted for distances travelled, particularly for crashes involving pedestrians and cyclists. Although there are multiple contributory factors, the low light levels at night are believed to be the major cause of collisions with pedestrians and cyclists at night, most likely due to their reduced visibility. Understanding the visibility problems involved in nighttime driving is thus critical, given the increased risk to road safety. RECENT FINDINGS: This review discusses research that highlights key differences in the nighttime road environment compared to the day and how this affects visual function and driving performance, together with an overview of studies investigating how driver age and visual status affect nighttime driving performance. Research that has focused on the visibility of vulnerable road users at nighttime (pedestrians and cyclists) is also included. SUMMARY: Collectively, the research evidence suggests that visual function is reduced under the mesopic lighting conditions of night driving and that these effects are exacerbated by increasing age and visual impairment. Light and glare from road lighting and headlights have significant impacts on vision and night driving and these effects are likely to change with evolving technologies, such as LED streetlighting and headlights. Research also highlights the importance of the visibility of vulnerable road users at night and the role of retroreflective clothing in the 'biomotion' configuration for improving their conspicuity and hence safety.  
  Address School of Optometry and Vision Science and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0275-5408 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31875993 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2803  
Permanent link to this record
 

 
Author Ogando-Martínez, A.; Troncoso-Pastoriza, F.; Eguía-Oller, P.; Granada-Álvarez, E.; Erkoreka, A. url  doi
openurl 
  Title Model Calibration Methodology to Assess the Actual Lighting Conditions of a Road Infrastructure Type Journal Article
  Year 2020 Publication Infrastructures Abbreviated Journal Infrastructures  
  Volume 5 Issue 1 Pages 2  
  Keywords Lighting  
  Abstract Street lighting plays an important role in the comfort and safety of drivers and pedestrians, so the control and management of the lighting systems operation and consumption is an essential service for a city. In this document, a methodology is presented to calibrate lighting models in order to assess the lighting performance through simulation techniques. The objective of this calibration is to identify the maintenance factor of the street lamps, determine the real average luminance coefficient of the road pavement and adapt the reflection properties of the road material. The method is applied in three stages and is based on the use of Radiance and GenOpt software suits for the modeling, simulation, and calibration of lighting scenes. The proposed methodology achieves errors as low as 13% for the calculation of illuminance and luminance, evincing its potential to assess the actual lighting conditions of a road.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2412-3811 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2802  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: