toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, J.; Zhou, M.; Xu, X.; Roudini, S.; Sander, S.P.; Pongetti, T.J.; Miller, S.D.; Reid, J.S.; Hyer, E.; Spurr, R. url  doi
openurl 
  Title Development of a nighttime shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 241 Issue Pages 111727  
  Keywords Remote Sensing  
  Abstract The launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Sumo-NPP satellite in 2011 ushered in a new era of using visible light and shortwave radiation at night to characterize aerosol and fire distributions from space. In order to exploit the full range of unprecedented observational capabilities of VIIRS, we have developed a nighttime shortwave radiative transfer model capability in the UNified and Linearized Radiative Transfer Model (UNL-VRTM). This capability is based on the use of additional source functions to treat illumination from the Moon, from fires, and from artificial lights. We have applied this model to address fundamental questions associated with the VIIRS sensing of aerosol and fire at night. Detailed description of model developments and validation (either directly with surface measurements of lunar spectra or indirectly through cross validation) are presented. Our analysis reveals that: (a) when convolution with the broad-range (500–900 nm) relative spectral response (RSR) function of the VIIRS Day-Night Band (DNB) is omitted, AOD retrieval from the DNB have uncertainties up to a factor of two in conditions with low or moderate AOD (<0.5 in mid-visible); (b) using a wavelength independent spectrum for the surface illumination source can lead to an AOD bias of −10% over surfaces illuminated by light-emitting diodes and fluorescent lamps, and −30% illuminated by high-pressure sodium lamps; and (c) a DNB-equivalent narrow band for AOD retrieval over the surfaces illuminated by the three types of bulbs studied in this paper is found to be centered at 585 nm at which the look-up table can be generated for AOD retrieval from DNB. Furthermore, while uncertainty in AOD retrievals from the DNB decreases as AOD increases, fire characterization can be affected by AOD; for a smoke-scenario AOD of 2.0, the DNB and SWIR (1.6 μm) radiances can be reduced by 50% depending on the fire area fraction and temperature within VIIRS pixel. DNB is overall more sensitive to smaller and cooler fires than SWIR and can be used to retrieve AOD over bright surfaces. Finally, three-dimensional (3D) radiative transfer effects and the non-collimated nature of most artificial light sources are neglected in this 1D radiative transfer (plane-parallel) model, resulting in possibly large uncertainties (e.g., the inability to reproduce side-illumination of clouds by city lights) that should be studied in future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2863  
Permanent link to this record
 

 
Author Marchant, Paul url  openurl
  Title Bad Science: comments on the paper ‘Quantifying the impact of road lighting on road safety — a New zealand Study’ by Jackett & Frith (2013). Type Journal Article
  Year 2020 Publication World Transport Policy and Practice Abbreviated Journal World Transp Policy & Practice  
  Volume 26 Issue 2 Pages 10-20  
  Keywords Safety; Security; Commentary; Statistics; Collisions  
  Abstract The paper of Jackett & Frith (2013), which purports to show considerable gains for road safety with increasing road luminance, is seriously flawed. It asserts that increasing the luminance on roads causes improvements in road safety. Its cross-sectional design fails to rule out major potential confounders. using a longitudinal design would be a far superior approach. The paper exhibits poor statistical practice. The selection process for the relatively small sample of urban roads is unclear and the post hoc processing of the data is questionable. The analysis is seriously deficient, as variables which indicate detrimental effects of increased road lighting are removed from the modelling without proper justification and other variables are not included in the first analysis yet appear in the subsequent cosmetic analyses. The latter give an illusion of false certainty. The data collected, which would allow checking, is not published. The practice of the journal in which the paper appeared is seriously deficient in not allowing the publication of critical responses. although being used to promote increased road lighting, the paper’s claim disagrees with results from better quality research  
  Address 221 Leighton Hall, Leeds Beckett University, Leeds, United Kingdom LS1 3HE; p.marchant(at)leedsbeckett.ac.uk  
  Corporate Author Thesis  
  Publisher World Transport Policy and Practice Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-7614 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2862  
Permanent link to this record
 

 
Author Kim, D.E.; Yoon, J.Y. url  doi
openurl 
  Title Factors that Influence Sleep among Residents in Long-Term Care Facilities Type Journal Article
  Year 2020 Publication International Journal of Environmental Research and Public Health Abbreviated Journal Int J Environ Res Public Health  
  Volume 17 Issue 6 Pages  
  Keywords Human Health; aged; environment; long-term care; sleep  
  Abstract Long-term care residents often experience sleep disturbances as they are vulnerable to a variety of physical, psychosocial, and environmental factors that contribute to sleep disturbances. However, few studies have examined the combined impact of multiple factors on sleep among long-term care residents. This study aimed to identify the factors that influence sleep efficiency and sleep quality based on a modified senescent sleep model. A total of 125 residents were recruited from seven long-term care facilities in South Korea. Sleep patterns and sleep quality were collected using 3-day sleep logs and the Minimal Insomnia Screening Scale for Korean adults (KMISS), respectively. The mean sleep efficiency was 84.6% and the mean score on sleep quality was 15.25. A multiple linear regression analysis showed that greater dependence in activities of daily living (ADL), higher pain, and light at night were related to lower sleep efficiency. Higher pain and fatigue, less activity time, noise and light at night, and lower nighttime staffing levels were related to poorer sleep quality. This study highlights that psychosocial and environmental factors as well as physical factors could influence sleep for long-term care residents. Our findings could be foundational evidence for multi-faceted sleep intervention program development in long-term care settings.  
  Address Research Institute of Nursing Science and College of Nursing, Seoul National University, Seoul 03080, Korea  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1660-4601 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32183274 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2861  
Permanent link to this record
 

 
Author Ma, J.; Guo, J.; Ahmad, S.; Li, Z.; Hong, J. url  doi
openurl 
  Title Constructing a New Inter-Calibration Method for DMSP-OLS and NPP-VIIRS Nighttime Light Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 6 Pages 937  
  Keywords Remote Sensing  
  Abstract The anthropogenic nighttime light (NTL) data that are acquired by satellites can characterize the intensity of human activities on the ground. It has been widely used in urban development assessment, socioeconomic estimate, and other applications. However, currently, the two main sensors, Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and Suomi National Polar-orbiting Partnership Satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS), provide inconsistent data. Hence, the application of NTL for long-term analysis is hampered. This study constructed a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light to solve this problem. First, NTL data were processed to obtain vicarious site across China. By comparing different candidate models, it is discovered the Biphasic Dose Response (BiDoseResp) model, which is a weighted combination of sigmoid functions, can best perform the regression between DMSP-OLS and logarithmically transformed NPP-VIIRS. The coefficient of determination of BiDoseResp model reaches 0.967. It’s residual sum of squares is 6.136×105 , which is less than 6.199×105 of Logistic function. After obtaining the BiDoseResp-calibrated VIIRS (BDRVIIRS), we smoothed it by a filter with optimal parameters to maximize the consistency. The result shows that the consistency of NTL data is greatly enhanced after calibration. In 2013, the correlation coefficient between DMSP-OLS and original NPP-VIIRS data in the China region is only 0.621, while that reaches to 0.949 after calibration. Finally, a consistent NTL dataset of China from 1992 to 2018 was produced. When compared with the existing methods, our method is applicable to the full dynamic range of DMSP-OLS. Besides, it is more suitable for country or larger scale areas. It is expected that this method can greatly facilitate the development of research that is based on the historical NTL archive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2860  
Permanent link to this record
 

 
Author Ściężor, T. url  doi
openurl 
  Title The impact of clouds on the brightness of the night sky Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 106962  
  Keywords Skyglow  
  Abstract Clouds are a kind of atmospheric factor that most effectively scatters the artificial light coming from the ground. Therefore, they have the most significant impact on the brightness of the night sky. The paper analyses the influence of both the level of cloudiness, as well as the genera of clouds and altitude of its base, on amplifying of the light pollution. The impact of cloudiness on the brightness of the night sky in places with different levels of light pollution was researched. Measurements of meteorological elements were used together with clouds genera assessments. The introduction of an innovative method of identifying some genera of clouds on the base of the all-night continuous measurements of the sky's brightness allowed for a similar analysis in the absence of observational data specifying the genera of clouds.

A linear correlation between the cloudiness and the brightness of the night sky was found. The determined linear correlation parameters allow for specifying the three types of light-polluted areas, possibly related to the density of population. It was found that among the nine genera of the identified night clouds, the Altocumulus, Cirrocumulus, and Cumulonimbus ones are responsible for this correlation. No dependence of the brightness of the night sky on the clouds’ albedo was found. In case of overcast sky, there was a clear relationship between the average altitude of the individual genus of clouds and the brightness of the night sky. Most of the night sky brightness comes from the light scattered on the lowest altitude clouds genera, while the least contribution comes from the light scattered on the high-level clouds. It was also found that at the freezing temperatures, the layer of aerosols forms below the level of the genera Nimbostratus or Stratus. This layer, thickening with the decreasing temperature, additionally scatters the artificial light.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2859  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: