|   | 
Details
   web
Records
Author Thawley, C.J.; Kolbe, J.J.
Title Artificial light at night increases growth and reproductive output in Anolis lizards Type Journal Article
Year 2020 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume 287 Issue 1919 Pages 20191682
Keywords Animals; Female; Lighting; Lizards; Male; Reproduction; artificial light at night; invasive species; life history; reproduction; urbanization
Abstract Since the invention of electric lighting, artificial light at night (ALAN) has become a defining, and evolutionary novel, feature of human-altered environments especially in cities. ALAN imposes negative impacts on many organisms, including disrupting endocrine function, metabolism, and reproduction. However, we do not know how generalized these impacts are across taxa that exploit urban environments. We exposed brown anole lizards, an abundant and invasive urban exploiter, to relevant levels of ALAN in the laboratory and assessed effects on growth and reproduction at the start of the breeding season. Male and female anoles exposed to ALAN increased growth and did not suffer increased levels of corticosterone. ALAN exposure induced earlier egg-laying, likely by mimicking a longer photoperiod, and increased reproductive output without reducing offspring quality. These increases in growth and reproduction should increase fitness. Anoles, and potentially other taxa, may be resistant to some negative effects of ALAN and able to take advantage of the novel niche space ALAN creates. ALAN and both its negative and positive impacts may play a crucial role in determining which species invade and exploit urban environments.
Address Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA; cthawley ( at ) gmail.com
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:31964308; PMCID:PMC7015333 Approved no
Call Number IDA @ john @ Serial (down) 3308
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L.; Fox, C.
Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
Year 2020 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume 34 Issue 3 Pages 694-706
Keywords Ecology; artificial light at night; coastal assemblages; cyanobacteria; epilithic biofilm; herbivores; heterotrophic bacteria; positive effects
Abstract 1. Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high‐shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbours, ports and marinas).

2. By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3. Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4. Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5. ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi ( at ) unipi.it
Corporate Author Thesis
Publisher British Ecological Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 3307
Permanent link to this record
 

 
Author Cheon, S.H.; Kim, J.-A.
Title Quantifying the influence of urban sources on night light emissions Type Journal Article
Year 2020 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 204 Issue Pages 103936
Keywords Planning; Light pollution; VIIRS; VIIRS-DNB; Urban land use; Urban built environment; Nightlight emissions; nightlights
Abstract Light pollution in urban locations is a complex, serious problem, but researchers have paid more attention to light pollution on natural, non-urban environments. Understanding the sources of artificial light radiance intensity is the first step in minimizing damage from light pollution in urban areas. The purpose of this study is to quantitatively examine the relationship between light pollution and urban built environments. We developed databases for a series of urban–built environment data with composite Visible Infrared Imaging Radiometer Suite day-night band (VIIRS-DNB) data from the Earth Observation Group of the United States National Oceanic Atmospheric Administration’s National Geophysical Data Center to apply regression models (production functions) with grid cells at a spatial resolution of 15 arc seconds. Based on the results, we identified urban-development and land-use characteristics and built-environment factors that caused high levels of light emissions in a city. First, high levels of light emissions are associated with urban spatial-development patterns, such as roads, office buildings, commercial facilities, higher proportions of “station influence areas,” and urban-development intensity. Second, more seriously, the infiltration of commercial facilities into urban residential areas makes them brighter and increases the risk of exposure to light pollution. Therefore, the development of commercial areas and commercial facilities that emit light should be properly managed, especially for areas mixed with residential land use. Third, our quantitative model with intra-city-level analyses can estimate a high level of the baseline light-emission propensity in Seoul, which indicates that a city’s light-emission intensity can be highly associated with its sociocultural and institutional characteristics for lighting and light uses.
Address Department of Urban Planning and Design, Hong-ik University, Seoul, Republic of Korea; scheon ( at ) gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 3306
Permanent link to this record
 

 
Author Walczak, K.; Crim, G.; Gesite, T.; Habtemichael, S.; Morgan, J.; Tarr, C.; Turkic, L.; Wiedemann, J.
Title The GONet (Ground Observing Network) Camera: An Inexpensive Light Pollution Monitoring System Type Report
Year 2020 Publication Abbreviated Journal
Volume preprint Issue Pages
Keywords Instrumentation; GONet; Light pollution; All-sky imaging; Sky brightness; Monitoring
Abstract Instrumentation developed to monitor and characterize light pollution from the ground has helped frame our understanding of the impacts of artificial light at night (ALAN) [Bará, Lima, & Zamorano, 2019; Hänel et al., 2018; Zamorano et al., 2017]. All-sky imaging has been used to quantify and characterize ALAN in a variety of environments [D. M. Duriscoe, 2016; Jechow, Kyba, & Hölker, 2019]. Over the past decade growth in access to DIY electronics has afforded the opportunity for the development of new and affordable instrumentation for ALAN research. The

GONet (Ground Observing Network) camera is an inexpensive (~USD 100), simple to use, all-sky imaging system designed to allow measurements of sky quality at night. Due to their ease of use and low price, GONet cameras allow observations by users with little technical expertise, large inter-comparison campaigns and deployments of opportunity. Developed as a student engineering project at the Adler Planetarium, initial field tests of the GONet system have demonstrated its utility as a tool that can benefit ALAN research. Here we present an overview of the

design and use of the GONet device, methods of calibration, initial results from observations, potential use cases, and limitations of the system. What we describe here is the version 1 GONet camera. We conclude with a brief description

of the version 2 unit already under development.
Address Adler Planetarium, Chicago, Illinois 60605, USA; kwalczak ( at ) adlerplanetarium.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 3305
Permanent link to this record
 

 
Author Aubé, M.; Marseille, C.; Farkouh, A.; Dufour, A.; Simoneau, A.; Zamorano, J.; Roby, J.; Tapia, C.
Title Mapping the Melatonin Suppression, Star Light and Induced Photosynthesis Indices with the LANcube Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 23 Pages 3954
Keywords Instrumentation; artificial light at night; intrusive light; direct light pollution; radiometry; multispectral; multiangular; Melatonin Suppression Index; Star Light Index; spectroscopy; measurement; synthetic photometry
Abstract Increased exposure to artificial light at night can affect human health including disruption of melatonin production and circadian rhythms which can extend to increased risks of hormonal cancers and other serious diseases. In addition, multiple negative impacts on fauna and flora are well documented, and it is a matter of fact that artificial light at night is a nuisance for ground-based astronomy. These impacts are frequently linked to the colour of the light or more specifically to its spectral content. Artificial light at night is often mapped by using spaceborne sensors, but most of them are panchromatic and thus insensitive to the colour. In this paper, we suggest a method that allows high-resolution mapping of the artificial light at night by using ground-based measurements with the LANcube system. The newly developed device separates the light detected in four bands (Red, Green, Blue and Clear) and provides this information for six faces of a cube. We found relationships between the LANcube’s colour ratios and (1) the Melatonin Suppression Index, (2) the StarLight Index and (3) the Induced Photosynthesis Index. We show how such relationships combined with data acquisition from a LANcube positioned on the top of a car can be used to produce spectral indices maps of a whole city in a few hours.
Address Cégep de Sherbrooke, Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, QC J1E 4K1, Canada; martin.aube ( at ) cegepsherbrooke.qc.ca
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial (down) 3304
Permanent link to this record