toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wuchterl, G.; Reithofer, M. openurl 
  Title Licht über Wien VII Type Journal Article
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Skyglow; Energy  
  Abstract 231. Auf einen BlickDie Helligkeit des Wiener Nachthimmels hat sich stabilisiert. 2019 ist das zweite Jahr in Folge, in dem die Energie desLichts über Wien um weniger als 5 % zugenommen hat. Die Menge des künstlichen Lichts über Wien hat sich nach dem steilem Anstieg der Jahre 2009 bis 2014 auf hohem Niveau eingependelt..Es besteht ein enger Zusammenhang zwischen Licht- und Luftverschmutzung. Über 10 Jahre bestehende Korrelationen von Lichtimmissions- und Luftgüteindikatoren bestätigen dies. Auf dieser Erkenntnis beruht eine auf standardisierte Luft-güte-Bedingungen normierte Angabe der Globalstrahlung, mit der direkter auf die von der Stadt eingebrachten Lichtmenge geschlossen werden kann.Der Kunstlichthalo über Wien wurde mit einer neuen Methode vollständiger berechnet und enthält demnach deutlich mehr Energie als bisher angenommen. 500 Gigawattstunden und 100.000 Tonnen CO2-Äquivalent pro Jahr müssen als typischer Wert für eine Untergrenze angenommen werden.  
  Address  
  Corporate Author Thesis  
  Publisher Verein Kuffner-Sternwarte Place of Publication Vienna Editor  
  Language German Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 3033  
Permanent link to this record
 

 
Author Ren, Z.; Liu, Y.; Chen, B.; Xu, B. url  doi
openurl 
  Title Where Does Nighttime Light Come From? Insights from Source Detection and Error Attribution Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 12 Pages 1922  
  Keywords Remote Sensing  
  Abstract Nighttime light remote sensing has aroused great popularity because of its advantage in estimating socioeconomic indicators and quantifying human activities in response to the changing world. Despite many advances that have been made in method development and implementation of nighttime light remote sensing over the past decades, limited studies have dived into answering the question: Where does nighttime light come from? This hinders our capability of identifying specific sources of nighttime light in urbanized regions. Addressing this shortcoming, here we proposed a parcel-oriented temporal linear unmixing method (POTLUM) to identify specific nighttime light sources with the integration of land use data. Ratio of root mean square error was used as the measure to assess the unmixing accuracy, and parcel purity index and source sufficiency index were proposed to attribute unmixing errors. Using the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light dataset from the Suomi National Polar-Orbiting Partnership (NPP) satellite and the newly released Essential Urban Land Use Categories in China (EULUC-China) product, we applied the proposed method and conducted experiments in two China cities with different sizes, Shanghai and Quzhou. Results of the POTLUM showed its relatively robust applicability of detecting specific nighttime light sources, achieving an rRMSE of 3.38% and 1.04% in Shanghai and Quzhou, respectively. The major unmixing errors resulted from using impure land parcels as endmembers (i.e., parcel purity index for Shanghai and Quzhou: 54.48%, 64.09%, respectively), but it also showed that predefined light sources are sufficient (i.e., source sufficiency index for Shanghai and Quzhou: 96.53%, 99.55%, respectively). The method presented in this study makes it possible to identify specific sources of nighttime light and is expected to enrich the estimation of structural socioeconomic indicators, as well as better support various applications in urban planning and management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 3032  
Permanent link to this record
 

 
Author Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A. url  doi
openurl 
  Title Limiting the impact of light pollution on human health, environment and stellar visibility Type Journal Article
  Year 2011 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage  
  Volume 92 Issue 10 Pages 2714-2722  
  Keywords Animals; Animals, Wild; Conservation of Natural Resources; Environment; *Environmental Pollution; Eye; *Health; Humans; Lighting/*adverse effects/standards; Melatonin/*antagonists & inhibitors; Sodium; Vision, Ocular/*physiology; Visual Perception  
  Abstract Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this “residual light pollution”, cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.  
  Address Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Via Roma 13, I-36106 Thiene, Italy. falchi(at)lightpollution.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21745709 Approved no  
  Call Number IDA @ john @ Serial (down) 3031  
Permanent link to this record
 

 
Author Salat, H.; Smoreda, Z.; Schlapfer, M. url  doi
openurl 
  Title A method to estimate population densities and electricity consumption from mobile phone data in developing countries Type Journal Article
  Year 2020 Publication PloS one Abbreviated Journal PLoS One  
  Volume 15 Issue 6 Pages e0235224  
  Keywords Remote Sensing  
  Abstract High quality census data are not always available in developing countries. Instead, mobile phone data are becoming a popular proxy to evaluate the density, activity and social characteristics of a population. They offer additional advantages: they are updated in real-time, include mobility information and record visitors' activity. However, we show with the example of Senegal that the direct correlation between the average phone activity and both the population density and the nighttime lights intensity may be insufficiently high to provide an accurate representation of the situation. There are reasons to expect this, such as the heterogeneity of the market share or the particular granularity of the distribution of cell towers. In contrast, we present a method based on the daily, weekly and yearly phone activity curves and on the network characteristics of the mobile phone data, that allows to estimate more accurately such information without compromising people's privacy. This information can be vital for development and infrastructure planning. In particular, this method could help to reduce significantly the logistic costs of data collection in the particularly budget-constrained context of developing countries.  
  Address Future Cities Laboratory, Singapore-ETH Centre, ETH Zurich, Singapore, Singapore  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32603345 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 3030  
Permanent link to this record
 

 
Author Zhang, D.; Jones, R.R.; Powell-Wiley, T.M.; Jia, P.; James, P.; Xiao, Q. url  doi
openurl 
  Title A large prospective investigation of outdoor light at night and obesity in the NIH-AARP Diet and Health Study Type Journal Article
  Year 2020 Publication Environmental Health : a Global Access Science Source Abbreviated Journal Environ Health  
  Volume 19 Issue 1 Pages 74  
  Keywords Human Health; Remote Sensing; Circadian rhythms; Light at night; Light pollution; Obesity  
  Abstract BACKGROUND: Research has suggested that artificial light at night (LAN) may disrupt circadian rhythms, sleep, and contribute to the development of obesity. However, almost all previous studies are cross-sectional, thus, there is a need for prospective investigations of the association between LAN and obesity risk. The goal of our current study was to examine the association between baseline LAN and the development of obesity over follow-up in a large cohort of American adults. METHODS: The study included a sample of 239,781 men and women (aged 50-71) from the NIH-AARP Diet and Health Study who were not obese at baseline (1995-1996). We used multiple logistic regression to examine whether LAN at baseline was associated with the odds of developing obesity at follow-up (2004-2006). Outdoor LAN exposure was estimated from satellite imagery and obesity was measured based on self-reported weight and height. RESULTS: We found that higher outdoor LAN at baseline was associated with higher odds of developing obesity over 10 years. Compared with the lowest quintile of LAN, the highest quintile was associated with 12% and 19% higher odds of developing obesity at follow-up in men (OR (95% CI) = 1.12 (1.00, 1.250)) and women (1.19 (1.04, 1.36)), respectively. CONCLUSIONS: Our findings suggest that high LAN exposure could predict a higher risk of developing obesity in middle-to-older aged American adults.  
  Address Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-069X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32611430; PMCID:PMC7329409 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 3029  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: