toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M.; Kundracik, F. url  doi
openurl 
  Title Multi-wavelength radiometry of aerosols designed for more accurate night sky brightness predictions Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 250 Issue Pages 106998  
  Keywords Skyglow; Remote Sensing  
  Abstract Scattering by aerosols and gases cause a certain fraction of artificial light emitted upwards is redirected to the ground. Of all atmospheric constituents just the aerosols are most important modulators of night-sky brightness under cloudless conditions. Unlike most of the previous we highlight a crucial role of solar radiometry for determining the atmospheric optical depth before night-time observation is to be made. Aerosol optical depth at visible wavelengths extracted from the data measured provides then the information on size distribution or mean refractive index of aerosol particles that in turn are both necessary to make night sky brightness prediction more accurate. Therefore, combining daytime and night-time radiometry we can achieve accuracy much higher than ever before. This is due to significantly reduced uncertainty in aerosol properties.

The aerosol data are retrieved from a new portable multi-wavelength optical analyzer that operates Ocean Optics spectrometer. The equipment provides the radiance data from 350 nm to 1000 nm with spectral resolution of 1 nm. Due to high sun radiance levels we use a system of mirrors each reducing the signal to about 4%, while keeping the integration time short. The minimum integration time of 3 ms allows for detection of direct sunlight. The system developed is sensitive to small changes in the aerosol system, while showing a good detection limit even under low turbidity conditions. The system performance is demonstrated in field experiment conducted shortly after front passage when most of aerosol particles is effectively removed by rain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2906  
Permanent link to this record
 

 
Author Zhang, B.; Zhang, H.; Jing, Q.; Wang, J. url  doi
openurl 
  Title Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.) Type Journal Article
  Year 2020 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 115 Issue Pages 106448  
  Keywords Plants  
  Abstract Perennial ryegrass (Lolium perenne L.) was commonly used for urban green planting such as lawns, which was not only affected by sunlight, but also by light pollution caused by night artificial lighting. In order to see the ryegrass growth, physiological characters and chlorophyll fluorescence response to light pollution and provide the suitable lighting time, 6 different artificial lighting times (24/0 h, 22/2 h, 20/4 h, 18/6 h, 16/8 h and 14/10 h) were conducted in growth chambers. There were significant systematic differences in perennial ryegrass growth characters in seed germination rate, leaf length (LL) and leaf weight (LW) (F = 47.99, 28.34, 13.47, respectively; P < 0.01) while under 16/8h lighting time treatment which had the highest values and the increasing lighting time decreased the growth. It had the best effect under 16/8h lighting time treatment on leaf physiological reactions and also significant. The maximum curvature point temperature (TCC) was significant different (F = 28.08, P < 0.01). The relative variable fluorescence differences at 2 ms (VJ) was increased with the lighting time increased (F = 20.25, P < 0.01). The results of reaction center (RC) of PSII under 6 lighting times also had significant differences. For the result of the yield and efficiency of electron transport chain (ETC), Fv/Fm (φP0), ψ0 and φE0 showed the significantly increased trend with the lighting time decreased while the φD0 was decreased. The shape of the OJIP curves was sensitive to the lighting times which showed that with the increasing lighting times the chlorophyll fluorescence intensity changed and shifted the fluorescence curve lower. Leaf light-response curves (LC) were also significant under 6 lighting times. Significant positive correlations were found between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and J-I-P test chlorophyll fluorescence parameters (PIABS, ABS/RC and TR0/RC) except ET0/RC while the correlation with DI0/RC was significant negative. There were significant positive correlations between leaf physiological characters (SP, SC, Chl a, Chl b, Chl a + b, WP and TCC) and φP0, φE0, ψ0 while the relationships with φD0 were significantly negative. Nighttime artificial lighting acted as a depressor of the fitness of photosynthesis and growth characters, via the changing of the photosynthetic apparatus.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470160X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2905  
Permanent link to this record
 

 
Author Finch, D.; Smith, B.R.; Marshall, C.; Coomber, F.G.; Kubasiewicz, L.M.; Anderson, M.; Wright, P.G.R.; Mathews, F. url  doi
openurl 
  Title Effects of Artificial Light at Night (ALAN) on European Hedgehog Activity at Supplementary Feeding Stations Type Journal Article
  Year 2020 Publication Animals : an Open Access Journal From MDPI Abbreviated Journal Animals (Basel)  
  Volume 10 Issue 5 Pages in press  
  Keywords Animals; Erinaceus europaeus; activity pattern; camera trap; citizen science; fragmentation; hedgehogs; light pollution; lightscape; urbanisation  
  Abstract : Artificial light at night (ALAN) can have negative consequences for a wide range of taxa. However, the effects on nocturnal mammals other than bats are poorly understood. A citizen science camera trapping experiment was therefore used to assess the effect of ALAN on the activity of European hedgehogs (Erinaceus europaeus) at supplementary feeding stations in UK gardens. A crossover design was implemented at 33 gardens with two treatments-artificial light and darkness-each of which lasted for one week. The order of treatment depended on the existing lighting regime at the feeding station: dark treatments were applied first at dark feeding stations, whereas light treatments were used first where the station was already illuminated. Although temporal changes in activity patterns in response to the treatments were noted in some individuals, the direction of the effects was not consistent. Similarly, there was no overall impact of ALAN on the presence or feeding activities of hedgehogs in gardens where supplementary feeding stations were present. These findings are somewhat reassuring insofar as they demonstrate no net negative effect on a species thought to be in decline, in scenarios where the animals are already habituated to supplementary feeding. However, further research is needed to examine long-term effects and the effects of lighting on hedgehog prey, reproductive success and predation risk.  
  Address Mammal Society, London E9 6EJ, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-2615 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32354129 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2904  
Permanent link to this record
 

 
Author Lee, E.; Kim, M. url  doi
openurl 
  Title Light and Life at Night as Circadian Rhythm Disruptors Type Journal Article
  Year 2019 Publication Chronobiology in Medicine Abbreviated Journal  
  Volume 1 Issue 3 Pages 95-102  
  Keywords Review; Human Health  
  Abstract Light is an important entraining agent for endogenous circadian rhythms. Artificial light at night (ALAN) negatively influences the circadian system, inducing acute effects on sleep and cognition, as well as chronic endocrine-disrupting effects resulting in obesity, cardiovascular disease, diabetes, and cancer. Although shift workers may be exposed to extreme ALAN, its impact on their health is obscured by factors such as daylight exposure, meal and sleep scheduling, and physical and social behavior. Studies have revealed a significant increase in breast cancer in high ALAN-polluted areas, although the correlation with outdoor or indoor lighting conditions is controversial. Increasing use of electronic devices makes it difficult to assess ALAN exposure in the general population. The development of surrogate markers and critical parameters is crucial for health study by ALAN exposure, and such markers should include risk factors related to ALAN exposure. The present review considers articles investigating the risk of ALAN for shift workers, the general population, and users of electronic devices, and addresses susceptibility factors, including age, sex, and chronotype. Shift workers may be regarded as an extreme ALAN-exposure group, but the growing use of electronic devices and lifestyle changes in the general population make difficult to differentiate ALAN risks to health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2903  
Permanent link to this record
 

 
Author Schottstädt, D. url  openurl
  Title Erfahrungen zur Anlockwirkung unterschiedlicher künstlicher Lichtquellen auf Nachtfalter (Lepidoptera: Macroheterocera) Type Journal Article
  Year 2016 Publication Sächsische Entomologische Zeitschrift Abbreviated Journal  
  Volume 9 Issue Pages 120-140  
  Keywords Animals  
  Abstract Light capture is the most effective method for the qualitative and quantitative collection of moths. This paper gives a brief overview of light traps installations, bulbs and their light spectrum, especially with respect to the ultraviolet radiation. In field ex-periments, various bulbs were used to study for their attractiveness to moths. In practical application, it should be noted that moths fly against the wind towards artificial light sources, they should be positioned so that the wind blows from the light source towards the biotope. For the manual light capture, almost all featured bulbs are suitable. If species of a larger catchment area are to be collected, higher-performance bulbs are recommend-ed, to attract more species and subjects. However, this could lead to more restlessness at the catchment, where considerable proportion of moths would only settle and found around the perimeter of the catchment area. For biotope-related light capture, stand-ardized systems with fluorescent tubes or more recently with LEDs are recommended, to enable comparison of studies. If comparison is not required, energy-saving lamps are recommended instead, because they have a higher light density with the same number of lumens, which entails a higher attracting effect. Mercury vapor and energy saving lamps have almost identical spectrum, but differ in power and its associated radiant energy. When these bulbs are used simultaneously, moths always fly towards the light source with the higher radiant energy. Therefore, it is not necessary to operate an energy-saving lamp or fluorescent tube next to a high-pressure lamp. Likewise, with the combination of su-peractinic, black light fluorescent tubes and energy-saving lamps. The superactinic lamp has a much higher radiation energy in the ultraviolet range and also has wavelengths in the blue range, while the black light lamp emits only certain wavelengths in the UV range.

Zusammenfassung.Der Lichtfang ist die effektivste Methode zur qualitativen und quantitativen Erfassung von Nachtfaltern. Es wird ein kurzer Überblick über Lichtfangan-lagen, Leuchtmittel und deren Lichtspektren, insbesondere mit Bezug auf die ultraviolette Strahlung gegeben. In Feldversuchen wurden verschiedene Leuchtmittel auf ihre Anlock-wirkung auf Nachtfalter verwendet. Im praktischen Einsatz ist dabei zu beachten, dass Nachtfalter gegen den Wind künstliche Lichtquellen anfliegen, so dass diese so aufgestellt werden sollten, dass der Wind vom Licht in den Biotop weht. Für den manuellen Lichtfang sind fast alle vorgestellten Leuchtmittel geeignet. Sollen die Arten eines größeren Einzugs-gebietes erfasst werden, sind leistungsstärkere Leuchtmittel zu empfehlen, mit denen etwas mehr Arten und sehr viel mehr Individuen angelockt werden. Dies geht aber mit mehr Unruhe an der Anlage einher und ein beträchtlicher Anteil der Falter setzt sich in der Umgebung der Anlage nieder, so dass die Umgebung nach Faltern abzusuchen ist. Für den biotopbezogenen Lichtfang sind standardisierte Anlagen mit Leuchtstoffröhren bzw. neuerdings mit LEDs zu empfehlen, um die eigenen Untersuchungen mit anderen vergleichen zu können. Ist dies nicht nötig, sind stattdessen Energiesparlampen empfe-hlenswert, da diese eine höhere Lichtdichte bei gleicher Lumenzahl aufweisen, was eine höhere Anlockwirkung mit sich bringt. Quecksilberdampf- und Energiesparlampen weisen fast identische Spektren auf, unterscheiden sich aber in der Leistung und der damit ver-bundenen Strahlungsenergie. Bei gleichzeitiger Verwendung dieser Leuchtmittel fliegen Nachtfalter immer die Lichtquelle mit der höheren Strahlungsenergie an. Deshalb ist es nicht erforderlich, neben einer Hochdrucklampe eine Energiesparlampe oder Leuchtst-offröhre zu betreiben. Ähnlich verhält es sich mit der Kombination superaktinischer und Schwarzlicht-Leuchtstoffröhren und Energiesparlampen. Die superaktinische Lampe hat eine viel höhere Strahlungsenergie im ultravioletten Bereich und besitzt auch Wellenlän-gen im blauen Bereich, während die Schwarzlichtlampe nur im UV-Bereich bestimmte Wellenlängen emittiert.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language German Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2902  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: