|   | 
Details
   web
Records
Author Kocifaj, M.
Title Towards a Comprehensive City Emission Function (CCEF) Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 205 Issue Pages 253-266
Keywords Lighting; Skyglow
Abstract The comprehensive city emission function (CCEF) is developed for a heterogeneous light-emitting or blocking urban environments, embracing any combination of input parameters that characterize linear dimensions in the system (size and distances between buildings or luminaires), properties of light-emitting elements (such as luminous building façades and street lighting), ground reflectance and total uplight-fraction, all of these defined for an arbitrarily sized 2D area. The analytical formula obtained is not restricted to a single model class as it can capture any specific light-emission feature for wide range of cities. The CCEF method is numerically fast in contrast to what can be expected of other probabilistic approaches that rely on repeated random sampling. Hence the present solution has great potential in light-pollution modeling and can be included in larger numerical models. Our theoretical findings promise great progress in light-pollution modeling as this is the first time an analytical solution to city emission function (CEF) has been developed that depends on statistical mean size and height of city buildings, inter-building separation, prevailing heights of light fixtures, lighting density, and other factors such as e.g. luminaire light output and light distribution, including the amount of uplight, and representative city size. The model is validated for sensitivity and specificity pertinent to combinations of input parameters in order to test its behavior under various conditions, including those that can occur in complex urban environments. It is demonstrated that the solution model succeeds in reproducing a light emission peak at some elevated zenith angles and is consistent with reduced rather than enhanced emission in directions nearly parallel to the ground.
Address
Corporate Author Thesis
Publisher ScienceDirect Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1757
Permanent link to this record
 

 
Author Clanton, N.; Gibbons, R.; Garcia, J.; Barber, M.
Title Seattle LED Adaptive Lighting Study Type Report
Year 2014 Publication Northwest Energy Efficiency Alliance Abbreviated Journal NEEA
Volume Issue E14-286 Pages
Keywords Public Safety; Lighting; Planning; Vision
Abstract The Northwest Energy Efficiency Alliance (NEEA) and the City of Seattle partnered to evaluate the future of solid state street lighting in the Pacific Northwest with a two-night demonstration in Seattle's Ballard neighborhood in March 2012. The study evaluates the effectiveness of LED streetlights on nighttime driver object detection visibility as function of light source spectral distribution (color temperature in degrees K) and light distribution. Clanton & Associates and VTTI also evaluated adaptive lighting (tuning of streetlights during periods of reduced vehicular and pedestrian activity) at three levels: one hundred percent of full light output, fifty percent of full light output, and twenty-five percent of full light output. The study, led by Clanton & Associates, Continuum Industries, and the VTTI, built upon previous visual performance studies conducted in Anchorage, Alaska; San Diego, California; and San Jose, California. The use of LED technology for city street lighting is becoming more widespread. While these lights are primarily touted for their energy efficiency, the combination of LEDs with advanced control technology, changes to lighting criteria, and a better understanding of human mesopic (low light level) visibility creates an enormous potential for energy savings and improved motorist and pedestrian visibility and safety. Data from these tests support the following statements: LED luminaires with a correlated color temperature of 4100K provide the highest detection distance, including statistically significantly better detection distance when compared to HPS luminaires of higher wattage. The non-uniformity of the lighting on the roadway surface provides a visibility enhancement and greater contrast for visibility. Contrast of objects, both positive and negative, is a better indicator of visibility than is average luminance level. Dimming the LED luminaires to fifty percent of IES RP-8 levels did not significantly reduce object detection distance in dry pavement conditions. Participants perceived dimming of sidewalks as less acceptable than dimming to the same level on the roadway. Asymmetric lighting did reduce glare and performed similarly to the symmetric lighting at the same color temperature (4100K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1763
Permanent link to this record
 

 
Author Tosini, G.; Ferguson, I.; Tubota, K.
Title Effects of blue light on the circadian system and eye physiology Type Journal Article
Year 2016 Publication Molecular Vision Abbreviated Journal Mol Vis
Volume 22 Issue Pages 61-72
Keywords Vision; blue light; Circadian Rhythm; eye; physiology
Abstract Light-emitting diodes (LEDs) have been used to provide illumination in industrial and commercial environments. LEDs are also used in TVs, computers, smart phones, and tablets. Although the light emitted by most LEDs appears white, LEDs have peak emission in the blue light range (400–490 nm). The accumulating experimental evidence has indicated that exposure to blue light can affect many physiologic functions, and it can be used to treat circadian and sleep dysfunctions. However, blue light can also induce photoreceptor damage. Thus, it is important to consider the spectral output of LED-based light sources to minimize the danger that may be associated with blue light exposure. In this review, we summarize the current knowledge of the effects of blue light on the regulation of physiologic functions and the possible effects of blue light exposure on ocular health.
Address Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA
Corporate Author Thesis
Publisher NCBI Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2216
Permanent link to this record
 

 
Author Bará, S.
Title Variations on a classical theme: On the formal relationship between magnitudes per square arcsecond and luminance Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl J of Sustainable Lighting
Volume 19 Issue 2 Pages 77
Keywords Instrumentation; skyglow; luminance; magnitude; sky brigthness; photometry
Abstract The formal link between magnitudes per square arcsecond and luminance is discussed in this paper. Directly related to the human visual system, luminance is defined in terms of the spectral radiance of the source, weighted by the CIE V(l) luminous efficiency function, and scaled by the 683 lm/W luminous efficacy constant. In consequence, any exact and spectrum-independent relationship between luminance and magnitudes per square arcsecond requires that the last ones be measured precisely in the CIE V(l) band. The luminance value corresponding to mVC=0 (zero-point of the CIE V(l) magnitude scale) depends on the reference source chosen for the definition of the magnitude system. Using absolute AB magnitudes, the zero point luminance of the CIE V(l) photometric band is 10.96 x 104 cd·m-2.
Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2586-1247 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2162
Permanent link to this record
 

 
Author Bará, S.; Escofet, J.
Title On lamps, walls, and eyes: The spectral radiance field and the evaluation of light pollution indoors Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal J of Quant Spect and Rad Trans
Volume 205 Issue Pages 267-277
Keywords Instrumentation; Light pollution; Artificial light at night; Light field; Radiance field; Radiometry; Photometry
Abstract Light plays a key role in the regulation of different physiological processes, through several visual and non-visual retinal phototransduction channels whose basic features are being unveiled by recent research. The growing body of evidence on the significance of these effects has sparked a renewed interest in the determination of the light field at the entrance pupil of the eye in indoor spaces. Since photic interactions are strongly wavelength-dependent, a significant effort is being devoted to assess the relative merits of the spectra of the different types of light sources available for use at home and in the workplace. The spectral content of the light reaching the observer eyes in indoor spaces, however, does not depend exclusively on the sources: it is partially modulated by the spectral reflectance of the walls and surrounding surfaces, through the multiple reflections of the light beams along all possible paths from the source to the observer. This modulation can modify significantly the non-visual photic inputs that would be produced by the lamps alone, and opens the way for controlling—to a certain extent—the subject's exposure to different regions of the optical spectrum. In this work we evaluate the expected magnitude of this effect and we show that, for factorizable sources, the spectral modulation can be conveniently described in terms of a set of effective filter-like functions that provide useful insights for lighting design and light pollution assessment. The radiance field also provides a suitable bridge between indoor and outdoor light pollution studies.
Address Área de Óptica, Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2163
Permanent link to this record