|   | 
Details
   web
Records
Author Kolláth, Z.
Title Measuring and modelling light pollution at the Zselic Starry Sky Park Type Journal Article
Year 2010 Publication Journal of Physics: Conference Series Abbreviated Journal J. Phys.: Conf. Ser.
Volume 218 Issue Pages 012001
Keywords Skyglow; modeling; measurement; SQM; sky brightness; Zselic; International Dark Sky Park; Hungry; measurements; modeling; light pollution; skyglow; radiative transfer
Abstract One of the first 'International Dark-sky Parks' in Europe was established at the Zselic Landscape Protection Area in Hungary. A special monitoring program has been carrying on to survey the quality of the night sky using 'Sky Quality Meters' and DSLR cameras. The main conclusion of our measurements is that the local villages have only a minimal effect on the quality of the sky. There are light-domes due to the neighbouring cities only close to the horizon, the main source of obtrusive light is the city of Kaposvár. The anthropogenic component of zenith luminance of the night sky is obtained as the function of the distance from the city centre of Kaposvár. Our data were modelled by radiation transfer calculations. These results can help to draw attention to the energy emitted useless to the space and to protect our nocturnal landscape of nature parks for the next generations.
Address Konkoly Observatory, Konkoly Thege u. 15-17, H-1121 Budapest, Hungary; kollath(at)konkoly.hu
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1436
Permanent link to this record
 

 
Author Nievas Rosillo, M.
Title Absolute photometry and Night Sky Brightness with all-sky cameras Type Report
Year 2013 Publication e-prints Complutense Abbreviated Journal e-prints Complutense
Volume Issue 24626 Pages
Keywords Instrumentation; skyglow; measurement; modeling
Abstract All-sky cameras have proven to be powerful tools to continuously monitoring the sky in a wide range of fields in both Astrophysics and Meteorology. In this work, we have developed a complete software pipeline to analyze the night CCD images obtained with one of such systems. This let us to study typical parameters used in Astrophysics to characterize the night sky quality, such as the Sky Brightness, the Cloud Coverage and the Atmospheric Extinction, how they evolve over the time and their variability. Using our software, we analyzed a large set of data from AstMon-OT all-sky camera at Teide Observatory. Results from this work have been applied in the support to the spanish CTA site proposal at Izaña, Tenerife and are being discussed within the CTA consortium. A comparison with data from other devices that have been used in site characterization such as the IAC80 telescope is also presented. This comparison is used to validate the results of the analysis of all-sky images. Finally, we test our software with AstMon-UCM and DSLR cameras. Some general recommendations for the use of DSLR cameras are provided.
Address Departamento de Astrofí­sica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, Madrid, Spain
Corporate Author Thesis Master's thesis
Publisher Place of Publication Madrid Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title e-prints Complutense Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1437
Permanent link to this record
 

 
Author Duriscoe, D.M.; Luginbuhl, C.B.; Elvidge, C.D.
Title The relation of outdoor lighting characteristics to sky glow from distant cities Type Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 46 Issue 1 Pages 35-49
Keywords measurements; light pollution; light at night; Suomi NPP; satellite; remote sensing; VIIRS
Abstract Five cities in the southwest United States were selected for an analysis of the impact of outdoor lighting practices on nighttime sky glow as observed from distances of 8–67 km. Data from the Suomi National Polar-orbiting Partnership (NPP) satellite visible infrared imaging radiometer suite day/night band were used to identify light sources for input to an atmospheric sky glow model. Total lumens of outdoor lighting were estimated by matching modelled to observed anthropogenic sky luminance at ground locations. The results of two conservative treatments were then modelled for each city: all outdoor luminaires fully shielded with the current lumen amount, and fully shielded luminaires with a lumen amount scaled to 2075 lm/capita, matching Flagstaff, Arizona. The results indicate 42–88% reductions in average all-sky glow utilizing these ‘best practices’ for environmental conservation.
Address U.S. National Park Service Night Skies Program, Bishop, CA, USA
Corporate Author Thesis
Publisher Sage Place of Publication Editor
Language Engligh Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 268
Permanent link to this record
 

 
Author Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.
Title Mapping city lights with night-time data from the DMSP operational linescan system. Type Journal Article
Year 1997 Publication Photogrammetric Engineering and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing
Volume 63 Issue 6 Pages 727-734
Keywords Remote Sensing
Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to detect low levels of visible and near-infrared (VNIR) radiance at

night. With the OLS “VIS” band data, it is possible to detect clouds illuminated by moonlight, plus lights from cities, towns, industrial sites, gas pares, and ephemeral events such as fires and lightning illuminated clouds. This paper presents methods which have been developed for detecting and geolocating VNIR emission sources with nighttime DMSP-OLS data and the analysis of image time series to identify spatially stable emissions from cities, towns, and industrial sites. Results are presented for the United States.
Address Desert Research Institute, University of Nevada System, Reno, NV 89506 and the Solar-Terrestrial Physics Division, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO 80303; cde(at)ngdc.noaa.gov
Corporate Author Thesis
Publisher American Society for Photogrammetry and Remote Sensing Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 497
Permanent link to this record
 

 
Author Crumey, A.
Title Human Contrast Threshold and Astronomical Visibility. Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS
Volume 422 Issue 3 Pages 2600-2619
Keywords Vision; visibility; skyglow; sky brightness; modeling
Abstract The standard visibility model in light-pollution studies is the formula of Hecht, as used e.g. by Schaefer. However, it is applicable only to point sources and is shown to be of limited accuracy. A new visibility model is presented for uniform achromatic targets of any size against background luminances ranging from zero to full daylight, produced by a systematic procedure applicable to any appropriate data set (e.g. Blackwell's), and based on a simple but previously unrecognized empirical relation between contrast threshold and adaptation luminance. The scotopic luminance correction for variable spectral radiance (colour index) is calculated. For point sources, the model is more accurate than Hecht's formula and is verified using telescopic data collected at Mount Wilson in 1947, enabling the sky brightness at that time to be determined. The result is darker than the calculation by Garstang, implying that light pollution grew more rapidly in subsequent decades than has been supposed. The model is applied to the nebular observations of William Herschel, enabling his visual performance to be quantified. Proposals are made regarding sky quality indicators for public use.
Address Department of Humanities, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; andrew.crumey(at)northumbria.ac.uk
Corporate Author Thesis
Publisher Oxford Journals Place of Publication Editor
Language English Summary Language (down) English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 536
Permanent link to this record