|
Records |
Links |
|
Author |
Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.; Sánchez de Miguel, A.; Zamorano, J. |

|
|
Title |
Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Lighting Research & Technology |
Abbreviated Journal |
Lighting Res & Tech |
|
|
Volume |
|
Issue |
October 2018 |
Pages |
|
|
|
Keywords |
Remote Sensing; traffic; Roadway lighting |
|
|
Abstract |
Under stable atmospheric conditions the brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) have specific time signatures, and this feature makes it possible to estimate the amount of brightness contributed by each of them. Our approach is based on transforming the time representation of the zenithal night sky brightness into a modal expansion in terms of the time signatures of the different sources of light. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated by means of a linear least squares fit. A practical method for determining the time signatures of different contributing sources is also described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that, besides the dominant streetlight contribution, artificial light leaking out of the windows of residential buildings may account for a significant share of the time-varying part of the zenithal night sky brightness at the measurement locations, whilst the contribution of the vehicle lights seems to be significantly smaller. |
|
|
Address |
Área de Óptica, Dept. Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain. salva.bara(at)usc.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SAGE |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1477-1535 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2052 |
|
Permanent link to this record |
|
|
|
|
Author |
Zubidat, A.E.; Fares, B.; Fares, F.; Haim, A. |

|
|
Title |
Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Cancer Control : Journal of the Moffitt Cancer Center |
Abbreviated Journal |
Cancer Control |
|
|
Volume |
25 |
Issue |
1 |
Pages |
1073274818812908 |
|
|
Keywords |
Human Health; 6-Smt; Cfl; EE-halogen; GDM-levels; body mass; carbon; corticosterone; cosinor analysis; light at night; yellow-LED |
|
|
Abstract |
Lighting technology is rapidly advancing toward shorter wavelength illuminations that offer energy-efficient properties. Along with this advantage, the increased use of such illuminations also poses some health challenges, particularly breast cancer progression. Here, we evaluated the effects of artificial light at night (ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA methylation, tumor growth, metastases formation, and urinary corticosterone levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results revealed an inverse dose-dependent relationship between wavelength and melatonin suppression. Short wavelength increased tumor growth, promoted lung metastases formation, and advanced DNA hypomethylation, while long wavelength lessened these effects. Melatonin treatment counteracted these effects and resulted in reduced cancer burden. The wavelength suppression threshold for melatonin-induced tumor growth was 500 nm. These results suggest that short wavelength increases cancer burden by inducing aberrant DNA methylation mediated by the suppression of melatonin. Additionally, melatonin suppression and global DNA methylation are suggested as promising biomarkers for early diagnosis and therapy of breast cancer. Finally, ALAN may manifest other physiological responses such as stress responses that may challenge the survival fitness of the animal under natural environments. |
|
|
Address |
1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SAGE |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1073-2748 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:30477310; PMCID:PMC6259078 |
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
2143 |
|
Permanent link to this record |
|
|
|
|
Author |
Stern, M.; Broja, M.; Sansone, R.; Grone, M.; Skene, S.S.; Liebmann, J.; Suschek, C.V.; Born, M.; Kelm, M.; Heiss, C. |

|
|
Title |
Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans |
Type |
Journal Article |
|
Year |
2018 |
Publication |
European Journal of Preventive Cardiology |
Abbreviated Journal |
Eur J Prev Cardiol |
|
|
Volume |
25 |
Issue |
17 |
Pages |
1875-1883 |
|
|
Keywords |
Human Health; Blue light; blood pressure; endothelial function; forearm blood flow; pulse wave velocity |
|
|
Abstract |
AIMS: Previous studies have shown that ultraviolet light can lead to the release of nitric oxide from the skin and decrease blood pressure. In contrast to visible light the local application of ultraviolet light bears a cancerogenic risk. Here, we investigated whether whole body exposure to visible blue light can also decrease blood pressure and increase endothelial function in healthy subjects. METHODS: In a randomised crossover study, 14 healthy male subjects were exposed on 2 days to monochromatic blue light or blue light with a filter foil (control light) over 30 minutes. We measured blood pressure (primary endpoint), heart rate, forearm vascular resistance, forearm blood flow, endothelial function (flow-mediated dilation), pulse wave velocity and plasma nitric oxide species, nitrite and nitroso compounds (secondary endpoints) during and up to 2 hours after exposure. RESULTS: Blue light exposure significantly decreased systolic blood pressure and increased heart rate as compared to control. In parallel, blue light significantly increased forearm blood flow, flow-mediated dilation, circulating nitric oxide species and nitroso compounds while it decreased forearm vascular resistance and pulse wave velocity. CONCLUSION: Whole body irradiation with visible blue light at real world doses improves blood pressure, endothelial function and arterial stiffness by nitric oxide released from photolabile intracutanous nitric oxide metabolites into circulating blood. |
|
|
Address |
Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford GU2 7XH, UK. Email: c.heiss(at) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
SAGE |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2047-4873 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:30196723 |
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
2157 |
|
Permanent link to this record |
|
|
|
|
Author |
Bará, S. |

|
|
Title |
Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Monthly Notices of the Royal Astronomical Society |
Abbreviated Journal |
|
|
|
Volume |
473 |
Issue |
3 |
Pages |
4164-4173 |
|
|
Keywords |
Instrumentation; atmospheric effects; light pollution; numerical methods; photometry |
|
|
Abstract |
A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding. |
|
|
Address |
1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Oxford Academic |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0035-8711 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
2164 |
|
Permanent link to this record |
|
|
|
|
Author |
Meier, J. |

|
|
Title |
Contentious Light: An Analytical Framework for Lighting Conflicts |
Type |
Journal Article |
|
Year |
2018 |
Publication |
International Journal of Sustainable Lighting |
Abbreviated Journal |
|
|
|
Volume |
20 |
Issue |
1 |
Pages |
62-77 |
|
|
Keywords |
Society; Lighting; Planning |
|
|
Abstract |
This paper takes into view the broad range of contemporary conflicts regarding outdoor lighting. It proposes a working-definition that allows for differentiating lighting conflicts from other forms of lighting-related contention, as well as an analytical framework that allows for the structured description of individual lighting conflicts, and the comparative analysis of multiple cases. The analytical framework was developed based on the social-scientific analysis of media reports of existing conflict cases in Europe and North America, and informed by existing knowledge from the fields of lighting and conflict studies. A central challenge for developing such a framework is dealing with the high level of contingency and complexity of lighting conflicts. The framework reduces this complexity by focusing its field of vision to those aspects that are directly related to the lighting and its contestation. For each of these aspects, it provides sets of descriptive variables that allow for describing the conflicts’ individuality in a standardized – and thus comparable – way. The framework strictly separates the regarded aspects from their judgment by the conflict parties, making it possible to contrast their views on one and the same lighting situation. A visual template supports the process of analysis. It allows for depicting individual cases in short, and for clearly identifying where perspectives differ. At the multiple-case level, the framework not only opens up possibilities for spatial and temporal comparisons of lighting conflicts and the subsequent development of typologies, but also for harnessing their potential for informing the development of more sustainable planning and policy approaches for artificial lighting. |
|
|
Address |
Department of Urban and Regional Planning, Technische Universität Berlin, Germany; josiane.meier(at)tu-berlin.de |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IJSL |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2190 |
|
Permanent link to this record |