toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S. url  doi
openurl 
  Title Anthropogenic disruption of the night sky darkness in urban and rural areas Type Journal Article
  Year 2016 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.  
  Volume 3 Issue 10 Pages 160541  
  Keywords Skyglow  
  Abstract The growing emissions of artificial light to the atmosphere are producing, among other effects, a significant increase of the night sky brightness (NSB) above its expected natural values. A permanent sensor network has been deployed in Galicia (northwest of Iberian peninsula) to monitor the anthropogenic disruption of the night sky darkness in a countrywide area. The network is composed of 14 detectors integrated in automated weather stations of MeteoGalicia, the Galician public meteorological agency. Zenithal NSB readings are taken every minute and the results are openly available in real time for researchers, interested stakeholders and the public at large through a dedicated website. The measurements allow one to assess the extent of the loss of the natural night in urban, periurban, transition and dark rural sites, as well as its daily and monthly time courses. Two metrics are introduced here to characterize the disruption of the night darkness across the year: the significant magnitude (m1/3) and the moonlight modulation factor (γ). The significant magnitude shows that in clear and moonless nights the zenithal night sky in the analysed urban settings is typically 14–23 times brighter than expected from a nominal natural dark sky. This factor lies in the range 7–8 in periurban sites, 1.6–2.5 in transition regions and 0.8–1.6 in rural and mountain dark sky places. The presence of clouds in urban areas strongly enhances the amount of scattered light, easily reaching amplification factors in excess of 25, in comparison with the light scattered in the same places under clear sky conditions. The periodic NSB modulation due to the Moon, still clearly visible in transition and rural places, is barely notable at periurban locations and is practically lost at urban sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1544  
Permanent link to this record
 

 
Author Tierney, S.M.; Friedrich, M.; Humphreys, W.F.; Jones, T.M.; Warrant, E.J.; Wcislo, W.T. url  doi
openurl 
  Title Consequences of evolutionary transitions in changing photic environments: Transitions in photic environments Type Journal Article
  Year 2017 Publication Austral Entomology Abbreviated Journal Austral Entomology  
  Volume 56 Issue 1 Pages 23-46  
  Keywords Animals  
  Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness. We begin by outlining the current knowledge of insect photic niches and the organismal adaptations and molecular modifications that have evolved for life in those environments. We then outline concepts and guidelines for future research in the fields of natural history, ethology, neurology, morphology and particularly the advantages that high throughput sequencing provides to these aspects of investigation. Finally, we highlight that the power of such integrative science lies in its ability to make phylogenetically robust comparative assessments of evolution, ones that are grounded by empirical evidence derived from a concrete understanding of organismal natural history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052174X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1610  
Permanent link to this record
 

 
Author Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; Spoelstra, H.; Wuchterl, G.; Kyba, C.C.M. url  doi
openurl 
  Title Measuring night sky brightness: methods and challenges Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 205 Issue Pages 278-290  
  Keywords skyglow  
  Abstract Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earthâ??s atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the â??Sky Quality Meterâ? continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1731  
Permanent link to this record
 

 
Author Villamizar, N.; García-Alcazar, A.; Sánchez-Vázquez, F. J. url  doi
openurl 
  Title Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchuslabrax) larvae Type Journal Article
  Year 2009 Publication Abbreviated Journal  
  Volume 292 Issue 1-2 Pages 80-86  
  Keywords animals; fish; light spectrum; photoperiod  
  Abstract This study investigates how the characteristics (spectrum and photoperiod) of artificial light affect European sea bass eggs and larvae from &#8722; 1 to 40 days post-hatching. Fertilised eggs and larvae were reared under five different light treatments: 12L:12D red light (LDR; half-peak bandwidth = 641–718 nm), 12L:12D blue light (LDB; half-peak bandwidth = 435–500 nm), 12L:12D broad-spectrum white light (LDW; 367 < &#955; < 1057 nm), 24L:0D broad-spectrum white light (LL) and 0L:24D (DD). The results showed that total length at day post-hatching 40 was significantly larger in larvae reared under LDB (15.4 ± 0.6 mm) and LL (15.2 ± 0.6 mm) than in larvae reared under LDR (11.7 ± 0.7 mm). Overall wet weight was highest under LDB (21.6 ± 2.02 mgr) and lowest in LDR larvae (13.6 ± 1.48 mgr). Yolk sac and oil globule absorption occurred more slowly in LDR and DD larvae, while LDB larvae developed their fin, teeth and swim bladder significantly earlier than the rest of the groups. DD larvae were unable to capture food and mortality was 100% by day post-hatching 18, while LDR larvae did not feed on rotifers, but fed on Artemia from day post-hatching 16 onwards. The best survival was obtained with the LL treatment, although significantly more problems with swim bladder development and lower jaw malformations were also identified in this group. In summary, these results highlight the key role of the light spectrum and photoperiod for European sea bass larvae, the best performance being achieved under the light conditions that best approached those of their natural aquatic environment (LDB). These findings should be considered when designing rearing protocols for larvae in aquaculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ schroer @ Serial 1606  
Permanent link to this record
 

 
Author Nasar, J.L.; Bokharaei, S. url  doi
openurl 
  Title Lighting modes and their effects on impressions of public squares Type Journal Article
  Year 2017 Publication Journal of Environmental Psychology Abbreviated Journal Journal of Environmental Psychology  
  Volume 49 Issue Pages 96-105  
  Keywords Psychology  
  Abstract Lighting may affect impressions of public places after dark. Prospect-refuge theory suggests that people would favor uniform, bright, or overhead lighting to the alternatives. The study had 363 (161 men, 202 women) adult participants. An on-line survey displayed color slides of two simulated squares, each repeated for all mixes of lighting modes (order randomized across participants). One square also varied the peripheral lighting tilt (down or out). For ratings, each participant was assigned at random to use one of twelve items for evaluation, excitement, restfulness, or behavioral intent. Because the scales had high inter-item reliability, we combined them into a composite preference scale. In agreement with P-R theory, uniform, bright, and overhead lighting received the higher scores. The peripheral lighting tilt (down or out) did not affect preference. Lighting designs might do well to offer unobstructed views of information ahead. Research could test on-site experience and different aspects of lighting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4944 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1612  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: