toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ściężor, T. url  doi
openurl 
  Title (down) The impact of clouds on the brightness of the night sky Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 106962  
  Keywords Skyglow  
  Abstract Clouds are a kind of atmospheric factor that most effectively scatters the artificial light coming from the ground. Therefore, they have the most significant impact on the brightness of the night sky. The paper analyses the influence of both the level of cloudiness, as well as the genera of clouds and altitude of its base, on amplifying of the light pollution. The impact of cloudiness on the brightness of the night sky in places with different levels of light pollution was researched. Measurements of meteorological elements were used together with clouds genera assessments. The introduction of an innovative method of identifying some genera of clouds on the base of the all-night continuous measurements of the sky's brightness allowed for a similar analysis in the absence of observational data specifying the genera of clouds.

A linear correlation between the cloudiness and the brightness of the night sky was found. The determined linear correlation parameters allow for specifying the three types of light-polluted areas, possibly related to the density of population. It was found that among the nine genera of the identified night clouds, the Altocumulus, Cirrocumulus, and Cumulonimbus ones are responsible for this correlation. No dependence of the brightness of the night sky on the clouds’ albedo was found. In case of overcast sky, there was a clear relationship between the average altitude of the individual genus of clouds and the brightness of the night sky. Most of the night sky brightness comes from the light scattered on the lowest altitude clouds genera, while the least contribution comes from the light scattered on the high-level clouds. It was also found that at the freezing temperatures, the layer of aerosols forms below the level of the genera Nimbostratus or Stratus. This layer, thickening with the decreasing temperature, additionally scatters the artificial light.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2859  
Permanent link to this record
 

 
Author Ściężor, T.; Czaplicka, A. url  doi
openurl 
  Title (down) The impact of atmospheric aerosol particles on the brightness of the night sky Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 254 Issue Pages 107168  
  Keywords Skyglow; Light pollution; Particulate matter; Atmosphere layers; Light scattering  
  Abstract This paper analyses the impact of various types of aerosols, both of natural and anthropogenic origin, on the brightness of the night sky glow in southern Poland. The particles of particulate matter, related to the combustion of solid fuels in the winter, the volcanic or desert dust, as well as mists and haze, are considered as the artificial light scattering sources. Measurements of the brightness of the cloudless and moonless night sky were done in 2009–2016, both within the city of Krakow and in suburban areas, as well as in mountainous ones. The strong linear correlation between the brightness of such sky and the concentration of particulate matter is shown. The acoustic sounding of the atmosphere (SODAR) has indicated the possibility of a relationship between the brightness of the night sky and the amount of such particulates, which accumulate in atmospheric boundary layers. The usefulness of the theoretical model of horizontal transport of dust in the atmosphere (FAPPS) for forecasting the brightness of the night sky glow is also pointed out. A clear effect of the Saharan origin dust clouds on the brightness of the night sky glow is shown. This brightness, in the conditions of a low level of light pollution, is associated with the forecasted optical density of such clouds. It is also demonstrated, that with the thickening of mist, the impact of distant light sources on the brightness of the night sky decreases, but the one of a nearby sources becomes more significant. The conclusion states that anthropogenic particulate matter has the greatest impact on the brightness of the cloudless night sky glow in winter. In areas heavily polluted with light, fogs and mist are particularly important. In areas with low levels of light pollution, the clear impact of desert dust is visible.  
  Address Faculty of Environmental and Power Engineering, Warszawska 24, 31-155 Kraków, Poland; tsciezor ( at ) pk.edu.pl  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 3414  
Permanent link to this record
 

 
Author Owens, A.C.S.; Lewis, S.M. url  doi
openurl 
  Title (down) The impact of artificial light at night on nocturnal insects: A review and synthesis Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 22 Pages 11337-11358  
  Keywords Animals; Review  
  Abstract In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.  
  Address Department of Biology Tufts University Medford Massachusetts  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30519447; PMCID:PMC6262936 Approved no  
  Call Number GFZ @ kyba @ Serial 2132  
Permanent link to this record
 

 
Author Svechkina, A.; Portnov, B.A.; Trop, T. url  doi
openurl 
  Title (down) The impact of artificial light at night on human and ecosystem health: a systematic literature review Type Journal Article
  Year 2020 Publication Landscape Ecology Abbreviated Journal Landscape Ecol  
  Volume 35 Issue 8 Pages 1725-1742  
  Keywords Human Health; Ecology; Review  
  Abstract Context

Artificial light at night (ALAN) provides an array of important benefits but might also adversely affect humans and other living organisms. Yet, the existing reviews of accumulated knowledge about the multifaceted effects associated with exposure to ALAN focus on distinct ecosystem components. As a result, our understanding of potential system-wide impacts of ALAN exposure is insufficient.

Objectives

This paper attempts to bridge this knowledge gap by reviewing a wide range of studies, with a particular focus on identifying the impacts of ALAN exposure that are common to different species.

Methods

The survey is conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and covers peer-reviewed articles published from 2000 to 2019.

Results

Seventy-four eligible articles, out of 1223 initially identified, were selected and synthesized. 20% of them focus on humans, while the rest explore other living organisms, such as vertebrates, avian species, arthropods, aquatic organisms, and vegetation. The review demonstrates that similar adverse effects of ALAN exposure, ranging from sleep disturbance, depression, weight gain, eating and movement disorders, to elevated risk of cancer, are manifested across different components of the ecosystem, and therefore entail wider and more complex risks to its stability and integrity.

Conclusion

To reduce ecosystem risks, associated with constantly increasing ALAN levels, illumination policies should be based on directional and reduced nighttime lighting, which can help to avoid unnecessary exposures. The study highlights knowledge gaps that warrant further research attention.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number UP @ altintas1 @ Serial 3211  
Permanent link to this record
 

 
Author Peregrym, M., Kónya E. P., & Vasyliuk, O. url  doi
openurl 
  Title (down) The impact of artificial light at night (ALAN) on the National Nature Parks, Biosphere and Naturе Reserves of the Steppe Zone and Crimean Mountains within Ukraine Type Journal Article
  Year 2018 Publication Palaearctic Grasslands Abbreviated Journal  
  Volume Issue Pages  
  Keywords Skyglow; Conservation  
  Abstract Artificial light at night (ALAN) and sky glow are a recognized anthropogenic pressure, but the consequences of this pressure on protected areas within Ukraine are unclear. This research attempted to estimate the level of light pollution on the protected territories of the National Nature Parks (NNPs), Biosphere and Nature Reserves in the Steppe Zone and Crimea Mountains of Ukraine. Kmz layers of

these protected territories and the New World Atlas of Artificial Sky Brightness, through Google Earth Pro, were used to calculate the level of artificial sky brightness for 15 NNPs, three Biosphere Reserves and 10 Nature Reserves. The results show that even some of the most protected areas within the Steppe Zone and Crimean Mountains are impacted by ALAN. Of the studied protected areas 44.2% have a natural dark night sky, 40.1% have artificial brightness ranging between 8 and 16%, and the remainder (15.7%) are polluted with an artificial brightness greater than 16%. Areas with light pollution greater than 16% are often situated near big cities or industrial centers. It was noted that light pollution levels were not taken into account during the creation of any protected areas within Ukraine.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2310  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: