toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mcmunn, M. S., Yang, L. H., Ansalmo, A., Bucknam, K., Claret, M., Clay, C., Cox, K., Dungey, D. D., Jones, A., & Kim, A. Y. url  doi
openurl 
  Title (up) Artificial Light Increases Local Predator Abundance, Predation Rates, and Herbivory Type Journal Article
  Year 2019 Publication Environmental Entomology Abbreviated Journal  
  Volume 48 Issue 6 Pages 1331–1339  
  Keywords Animals; Predation; Arthropods; Ecology  
  Abstract Human activity is rapidly increasing the radiance and geographic extent of artificial light at night (ALAN) leading to alterations in the development, behavior, and physiological state of many organisms. A limited number of community-scale studies investigating the effects of ALAN have allowed for spatial aggregation through positive phototaxis, the commonly observed phenomenon of arthropod movement toward light. We performed an open field study (without restricted arthropod access) to determine the effects of ALAN on local arthropod community composition, plant traits, and local herbivory and predation rates. We found strong positive phototaxis in 10 orders of arthropods, with increased (159% higher) overall arthropod abundance under ALAN compared to unlit controls. The arthropod community under ALAN was more diverse and contained a higher proportion of predaceous arthropods (15% vs 8%). Predation of immobilized flies occurred 3.6 times faster under ALAN; this effect was not observed during the day. Contrary to expectations, we also observed a 6% increase in herbivory under ALAN. Our results highlight the importance of open experimental field studies in determining community-level effects of ALAN.  
  Address Department of Entomology and Nematology, University of California, Davis, Davis, CA; mmcmunn(at)gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2725  
Permanent link to this record
 

 
Author Duarte, C.; Quintanilla-Ahumada, D.; Anguita, C.; Manríquez, P.H.; Widdicombe, S.; Pulgar, J.; Silva-Rodriguez, E.A.; Miranda, C.; Manríquez, K.; Quijón, P.A. url  doi
openurl 
  Title (up) Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod Type Journal Article
  Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution  
  Volume 248 Issue Pages 565-573  
  Keywords Animals; isopod; Tylos spinulosus; Chile; beaches; mesocosms  
  Abstract Coastal habitats, in particular sandy beaches, are becoming increasingly exposed to artificial light pollution at night (ALAN). Yet, only a few studies have this far assessed the effects of ALAN on the species inhabiting these ecosystems. In this study we assessed the effects of ALAN on Tylos spinulosus, a prominent wrack-consumer isopod living in sandy beaches of north-central Chile. This species burrows in the sand during daylight and emerges at night to migrate down-shore, so we argue it can be used as a model species for the study of ALAN effects on coastal nocturnal species. We assessed whether ALAN alters the distribution and locomotor activity of this isopod using a light system placed in upper shore sediments close to the edge of the dunes, mimicking light intensities measured near public lighting. The response of the isopods was compared to control transects located farther away and not exposed to artificial light. In parallel, we measured the isopods’ locomotor activity in the laboratory using actographs that recorded their movement within mesocosms simulating the beach surface. Measurements in the field indicated a clear reduction in isopod abundance near the source of the light and a restriction of their tidal distribution range, as compared to control transects. Meanwhile, the laboratory experiments showed that in mesocosms exposed to ALAN, isopods exhibited reduced activity and a circadian rhythm that was altered and even lost after a few days. Such changes with respect to control mesocosms with a natural day/night cycle suggest that the changes observed in the field were directly related to a disruption in the locomotor activity of the isopods. All together these results provide causal evidence of negative ALAN effects on this species, and call for further research on other nocturnal sandy beach species that might become increasingly affected by ALAN.  
  Address Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2228  
Permanent link to this record
 

 
Author Kumar, P.; Ashawat, M.S.; Pandit, V.; Sharma, D.K. url  doi
openurl 
  Title (up) Artificial Light Pollution at Night: A Risk for Normal Circadian Rhythm and Physiological Functions in Humans Type Journal Article
  Year 2019 Publication Current Environmental Engineering Abbreviated Journal Cee  
  Volume 6 Issue 2 Pages 111-125  
  Keywords Human Health; Review  
  Abstract From the past three to four decades, ecologists and scientists have exhaustively studied the effect of increased artificial light pollution at night on the ecological and physiological behavior of mammals. The Suprachiasmatic Nuclei (SCN) or master clock in the brain of mammals including humans synchronizes the physiological functions with the light: dark cycle. The prolongation of light period in the light: dark cycle disrupts the circadian rhythm of mammals causing several negative or modified physiological consequences. Changed physiological level of melatonin, an important endocrine hormone, had been identified as an important factor causing different consequences such as cancer, diabetes mellitus, metabolic disturbances, oxidative stress, and depression. The presence of artificial light at night is the demand of the era but thoughts must be given to the prevention of consequences due to artificial light pollution and ‘how much is needed’. The review paper discusses the effect of artificial light pollution on the biological clock of humans and associated negative physiological consequences. Further, the paper also briefly discusses the economics of light pollution and measures needed to prevent physiological disorders in humans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-7178 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2695  
Permanent link to this record
 

 
Author Manríquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijón, P.A.; Widdicombe, S.; Pulgar, J.; Manríquez, K.; Quintanilla-Ahumada, D.; Duarte, C. url  doi
openurl 
  Title (up) Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 661 Issue Pages 543-552  
  Keywords Animals; Concholepas concholepas; sea snails; mollusks; Muricidae  
  Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.  
  Address Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; atriciohmanriquez(at)gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2173  
Permanent link to this record
 

 
Author Manriquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijon, P.A.; Widdicombe, S.; Pulgar, J.; Manriquez, K.; Quintanilla-Ahumada, D.; Duarte, C. url  doi
openurl 
  Title (up) Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
  Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume 661 Issue Pages 543-552  
  Keywords Animals  
  Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.  
  Address Departamento de Ecologia y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30682607 Approved no  
  Call Number GFZ @ kyba @ Serial 2213  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: