toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dong, K.; Goyarts, E.C.; Pelle, E.; Trivero, J.; Pernodet, N. url  doi
openurl 
  Title (up) Blue Light disrupts the circadian rhythm and create damage in skin cells Type Journal Article
  Year 2019 Publication International Journal of Cosmetic Science Abbreviated Journal Int J Cosmet Sci  
  Volume 41 Issue 6 Pages 558-562  
  Keywords Human Health; Circadian disruption; Skin; Clock genes  
  Abstract On a daily basis, the skin is exposed to many environmental stressors and insults. Over a 24-hr natural cycle, during the day, the skin is focused on protection; while at night, the skin is focused on repairing damage that occurred during daytime and getting ready for the next morning. Circadian rhythm provides the precise timing mechanism for engaging those different pathways necessary to keep a healthy skin through clock genes that are present in all skin cells. The strongest clue for determining cellular functions timing is through sensing light or absence of light (darkness). Here, we asked the question if blue light could be a direct entrainment signal to skin cells and also disrupt their circadian rhythm at night. Through a reporter assay for per1 transcription, we demonstrate that blue light at 410nm decreases per1 transcription in keratinocytes, showing that epidermal skin cells can sense light directly and control their own clock gene expression. This triggers cells to “think” it is daytime even at nighttime. Elsewhere, we measured different skin cell damage due to blue light exposure (at different doses and times of exposure) versus cells that were kept in full darkness. We show an increase of ROS production, DNA damage and inflammatory mediators. These deleterious effects can potentially increase overall skin damage over time and ultimately accelerates aging.  
  Address Materials Science & Engineering, Stony Brook University, Stony Brook  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-5463 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31418890 Approved no  
  Call Number GFZ @ kyba @ Serial 2618  
Permanent link to this record
 

 
Author Stern, M.; Broja, M.; Sansone, R.; Grone, M.; Skene, S.S.; Liebmann, J.; Suschek, C.V.; Born, M.; Kelm, M.; Heiss, C. url  doi
openurl 
  Title (up) Blue light exposure decreases systolic blood pressure, arterial stiffness, and improves endothelial function in humans Type Journal Article
  Year 2018 Publication European Journal of Preventive Cardiology Abbreviated Journal Eur J Prev Cardiol  
  Volume 25 Issue 17 Pages 1875-1883  
  Keywords Human Health; Blue light; blood pressure; endothelial function; forearm blood flow; pulse wave velocity  
  Abstract AIMS: Previous studies have shown that ultraviolet light can lead to the release of nitric oxide from the skin and decrease blood pressure. In contrast to visible light the local application of ultraviolet light bears a cancerogenic risk. Here, we investigated whether whole body exposure to visible blue light can also decrease blood pressure and increase endothelial function in healthy subjects. METHODS: In a randomised crossover study, 14 healthy male subjects were exposed on 2 days to monochromatic blue light or blue light with a filter foil (control light) over 30 minutes. We measured blood pressure (primary endpoint), heart rate, forearm vascular resistance, forearm blood flow, endothelial function (flow-mediated dilation), pulse wave velocity and plasma nitric oxide species, nitrite and nitroso compounds (secondary endpoints) during and up to 2 hours after exposure. RESULTS: Blue light exposure significantly decreased systolic blood pressure and increased heart rate as compared to control. In parallel, blue light significantly increased forearm blood flow, flow-mediated dilation, circulating nitric oxide species and nitroso compounds while it decreased forearm vascular resistance and pulse wave velocity. CONCLUSION: Whole body irradiation with visible blue light at real world doses improves blood pressure, endothelial function and arterial stiffness by nitric oxide released from photolabile intracutanous nitric oxide metabolites into circulating blood.  
  Address Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford GU2 7XH, UK. Email: c.heiss(at)  
  Corporate Author Thesis  
  Publisher SAGE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-4873 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30196723 Approved no  
  Call Number IDA @ john @ Serial 2157  
Permanent link to this record
 

 
Author Phipps-Nelson, J.; Redman, J.R.; Schlangen, L.J.M.; Rajaratnam, S.M.W. url  doi
openurl 
  Title (up) Blue light exposure reduces objective measures of sleepiness during prolonged nighttime performance testing Type Journal Article
  Year 2009 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 26 Issue 5 Pages 891-912  
  Keywords Human Health  
  Abstract This study examined the effects of nocturnal exposure to dim, narrowband blue light (460 nm, approximately 1 lux, 2 microW/cm2), compared to dim broad spectrum (white) ambient light ( approximately 0.2 lux, 0.5 microW/cm2), on subjective and objective indices of sleepiness during prolonged nighttime performance testing. Participants were also exposed to a red light (640 nm, approximately 1 lux, 0.7 microW/cm2) placebo condition. Outcome measures were driving simulator and psychomotor vigilance task (PVT) performance, subjective sleepiness, salivary melatonin, and electroencephalographic (EEG) activity. The study had a repeated-measures design, with three counterbalanced light conditions and a four-week washout period between each condition. Participants (n = 8) maintained a regular sleep-wake schedule for 14 days prior to the approximately 14 h laboratory study, which consisted of habituation to light conditions followed by neurobehavioral performance testing from 21:00 to 08:30 h under modified constant-routine conditions. A neurobehavioral test battery (2.5 h) was presented four times between 21:00 and 08:30 h, with a 30 min break between each. From 23:30 to 05:30 h, participants were exposed to blue or red light, or remained in ambient conditions. Compared to ambient light exposure, blue light exposure suppressed EEG slow wave delta (1.0-4.5 Hz) and theta (4.5-8 Hz) activity and reduced the incidence of slow eye movements. PVT reaction times were significantly faster in the blue light condition, but driving simulator measures, subjective sleepiness, and salivary melatonin levels were not significantly affected by blue light. Red light exposure, as compared to ambient light exposure, reduced the incidence of slow eye movements. The results demonstrate that low-intensity, blue light exposure can promote alertness, as measured by some of the objective indices used in this study, during prolonged nighttime performance testing. Low intensity, blue light exposure has the potential to be applied to situations where it is desirable to increase alertness but not practical or appropriate to use bright light, such as certain occupational settings.  
  Address School of Psychology, Psychiatry and Psychological Medicine, Monash University, Clayton, Victoria, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19637049 Approved no  
  Call Number GFZ @ kyba @ Serial 2202  
Permanent link to this record
 

 
Author Point, S. doi  openurl
  Title (up) Blue Light Hazard: are exposure limit values protective enough for newborn infants? Type Journal Article
  Year 2018 Publication Radioprotection Abbreviated Journal  
  Volume 53 Issue 3 Pages 219-224  
  Keywords Human Health  
  Abstract Blue Light Hazard is an emerging concern for health of population. Nevertheless, acute exposure to blue rays from artificial light is well taken into account by normative requirements applicable to lamps engineering and risk for general population is low. There is also no evidence for a chronic effect of artificial lighting on retina for general population at radiance below exposure limit values. That said, children in the very first years of life constitute a specific population to consider. On one side, eye anatomy of very young infants is different from elder young people or adults. On the other side, infants can be in close contact with some luminous toys or night lights. This paper presents a first approach for taking into account the specific anatomy of newborn infants’ eyes in blue light hazard evaluation. Results show that differences of crystalline lens transparency, focal length and pupil diameter could induce a significantly higher retinal exposure than for adult.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1982  
Permanent link to this record
 

 
Author Wang, H.-B.; Whittaker, D.S.; Truong, D.; Mulji, A.K.; Ghiani, C.A.; Loh, D.H.; Colwell, C.S. url  doi
openurl 
  Title (up) Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease Type Journal Article
  Year 2017 Publication Neurobiology of Sleep and Circadian Rhythms Abbreviated Journal Neurobiology of Sleep and Circadian Rhythms  
  Volume 2 Issue Pages 39-52  
  Keywords animals; Human Health  
  Abstract Patients with Huntington's disease (HD) exhibit movement disorders, psychiatric disturbance and cognitive impairments as the disease progresses. Abnormal sleep/wake cycles are common among HD patients with reports of delayed sleep onset, fatigue during the day, and a delayed pattern of melatonin secretion all of which suggest circadian dysfunction. Mouse models of HD confirm disrupted circadian rhythms with pathophysiology found in the central circadian clock (suprachiasmatic nucleus). Importantly, circadian dysfunction manifests early in disease, even before the classic motor symptoms, in both patients and mouse models. Therefore, we hypothesize that the circadian dysfunction may interact with the disease pathology and exacerbate the HD symptoms. If correct, early intervention may benefit patients and delay disease progression. One test of this hypothesis is to determine whether light therapy designed to strengthen this intrinsic timing system can delay the disease progression in mouse models. Therefore, we determined the impact of blue wavelength-enriched light on two HD models: the BACHD and Q175 mice. Both models received 6 hours of blue-light at the beginning of their daily light cycle for 3 months. After treatment, both genotypes showed improvements in their locomotor activity rhythm without significant change to their sleep behavior. Critically, treated mice of both lines exhibited improved motor performance compared to untreated controls. Focusing on the Q175 genotype, we sought to determine whether the treatment altered signaling pathways in brain regions known to be impacted by HD using NanoString gene expression assays. We found that the expression of several HD relevant markers was altered in the striatum and cortex of the treated mice. Our study demonstrates that strengthening the circadian system can delay the progression of HD in pre-clinical models. This work suggests that lighting conditions should be considered when managing treatment of HD and other neurodegenerative disorders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9944 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1626  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: