toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wang, G., Wang, S., Zhang, L., Sun, F., Yan, F., & Yang, X. url  doi
openurl 
  Title (up) A New Light Control Method with Charge Induction of Moving Target Type Journal Article
  Year 2019 Publication IEEE Sensors Journal Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Instrumentation  
  Abstract Intelligent lamp control system has been widely studied all over the world because of its energy saving and social effect. In this paper, a new intelligent lamp control method based on charge induction for moving target is proposed. The detection model is established with the surface charge induction and verified by a luggage detection experiment. The intelligent lamp control system using the detection method is carried out. The performance of the system demonstrates that the proposed method can detect the moving target at any orientation whatever with or without occlusion and the detection distance can reach more than 3 m for the pedestrian.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2470  
Permanent link to this record
 

 
Author Chen, X.; Jia, X.; Pickering, M. url  doi
openurl 
  Title (up) A Nighttime Lights Adjusted Impervious Surface Index (NAISI) with Integration of Landsat Imagery and Nighttime Lights Data from International Space Station Type Journal Article
  Year 2019 Publication International Journal of Applied Earth Observation and Geoinformation Abbreviated Journal International Journal of Applied Earth Observation and Geoinformation  
  Volume 83 Issue Pages 101889  
  Keywords Remote Sensing  
  Abstract Accurate mapping of impervious surface is essential for both urbanization monitoring and micro-ecosystem research. However, the confusion between impervious surface and bare soil is the major concern due to their high spectral similarity in optical imagery. Integration of multi-sensor images is considered to offer a better capacity for distinguishing impervious surface from background. In this paper, a new impervious surface index namely nighttime light adjusted impervious surface index (NAISI), which integrates information from Landsat and nighttime lights (NTL) data from International Space Station (NTL-ISS), is proposed. Parallel to baseline subtraction approaches, NAISI integrate the information from the first component of principal component (PC) transformation of NTL-ISS, the Soil Adjusted Vegetation Index (SAVI) and the third component of tasseled cap transform (TC3) of the Landsat data. Visual interpretation and quantitative indices (SDI, Kappa and overall accuracy) were adopted to elevate the accuracy and separability of NAISI. Comparative analysis with NTL derived light intensity, optical indices, as well as existing optical-NTL indices were conducted to examine the performance of NAISI. Results indicate that NAISI achieves a more promising capability in impervious surface mapping. This demonstrates the superiority of integration of optical and nighttime lights information for imperviousness detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0303-2434 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2658  
Permanent link to this record
 

 
Author Rea, M.; Skinner, N.; Bullough, J. url  doi
openurl 
  Title (up) A Novel Barricade Warning Light System Using Wireless Communications Type Journal Article
  Year 2018 Publication SAE Technical Paper 2018-01-5036 Abbreviated Journal  
  Volume In press Issue Pages  
  Keywords Lighting; Safety  
  Abstract Workers in construction and transportation sectors are at increased risk for work-related injuries and fatalities by nearby traffic. Barricade-mounted warning lights meeting current specifications do not always provide consistent and adequate visual guidance to drivers and can contribute to glare and reduced safety. Through an implementation of sensors and wireless communications, a novel, intelligent set of warning lights and a tablet-based interface were developed. The lights modulate between 100% and 10% of maximum intensity rather than between 100% and off in order to improve visual guidance and adjust their overall intensity based on ambient conditions. The lights can be synchronized or operated in sequential flash patterns at any frequency between 1 and 4 Hz, and sequential patterns automatically update based on global positioning satellite (GPS) locations displayed in the control interface. A successful field demonstration of the system verified that its functions were viewed favorably by transportation safety personnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2117  
Permanent link to this record
 

 
Author Hu, T.; Huang, X. url  doi
openurl 
  Title (up) A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data Type Journal Article
  Year 2019 Publication Applied Energy Abbreviated Journal Applied Energy  
  Volume 240 Issue Pages 778-792  
  Keywords Remote Sensing  
  Abstract Timely and reliable estimation of electricity power consumption (EPC) is essential to the rational deployment of electricity power resources. Nighttime stable light (NSL) data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) have the potential to model global 1-km gridded EPC. A processing chain to estimate EPC includes: (1) NSL data correction; and (2) regression model between EPC statistics and NSL data. For the global gridded EPC estimation, the current approach is to correct the global NSL image in a uniform manner and establish the linear relationships between NSL and EPC. However, the impacts of local socioeconomic inconsistencies on the NSL correction and model establishment are not fully considered. Therefore, in this paper, we propose a novel locally adaptive method for global EPC estimation. Firstly, we set up two options (with or without the correction) for each local area considering the global NSL image is not saturated everywhere. Secondly, three directions (forward, backward, or average) are alternatives for the inter-annual correction to remove the discontinuity effect of NSL data. Thirdly, four optional models (linear, logarithmic, exponential, or second-order polynomial) are adopted for the EPC estimation of each local area with different socioeconomic dynamic. Finally, the options for each step constitute all candidate processing chains, from which the optimal one is adaptively chosen for each local area based on the coefficient of determination. The results demonstrate that our product outperforms the existing one, at global, continental, and national scales. Particularly, the proportion of countries/districts with a high accuracy (MARE (mean of the absolute relative error)  ≤ 10%) increases from 17.8% to 57.8% and the percentage of countries/districts with inaccurate results (MARE > 50%) decreases sharply from 23.0% to 3.7%. This product can enhance the detailed understanding of the spatiotemporal dynamics of global EPC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-2619 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2242  
Permanent link to this record
 

 
Author Rayleigh, L. url  doi
openurl 
  Title (up) A Photoelectric Method of Measuring the Light of the Night Sky with Studies of the Course of Variation through the Night Type Journal Article
  Year 1929 Publication Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Abbreviated Journal Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences  
  Volume 124 Issue 794 Pages 395-408  
  Keywords Instrumentation; Night Sky Brightness  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-5021 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2396  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: