|   | 
Details
   web
Records
Author You, X.; Monahan, K.M.
Title (up) A thirst for development: mapping water stress using night-time stable lights as predictors of province-level water stress in China Type Journal Article
Year 2017 Publication Area Abbreviated Journal Area
Volume 49 Issue 4 Pages 477-485
Keywords Remote Sensing
Abstract Given the rapid development within China, the inequality of available water resources has been increasingly of interest. Current methods for assessing water stress are inadequate for province‐scale rapid monitoring. A more responsive indicator at a finer scale is needed to understand the distribution of water stress in China. This paper selected Defense Meteorological Satellite Program Operational Line‐scan System night‐time stable lights as a proxy for water stress at the province level in China from 2004 to 2012, as night‐time lights are closely linked with population density, electricity consumption and other social, economic and environmental indicators associated with water stress. The linear regression results showed the intensity of night‐time lights can serve as a predictive tool to assess water stress across provinces with an R2 from 0.797 to 0.854. The model worked especially well in some regions, such as East China, North China and South West China. Nonetheless, confounding factors interfered with the predictive relationship, including population density, level of economic development, natural resource endowment and industrial structures, etc. The model was not greatly improved by building a multi‐variable linear regression including agricultural and industrial indicators. A straightforward predictor of water stress using remotely sensed data was developed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-0894 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2030
Permanent link to this record
 

 
Author Pack, D. W., Coffman, C. M., & Santiago, J. R.
Title (up) A Year in Space for the CUbesat MULtispectral Observing System: CUMULOS Type Conference Article
Year 2019 Publication 33rd Annual AIAA/USU Conference on Small Satellites Abbreviated Journal
Volume SSC19-XI-01 Issue Pages
Keywords Remote Sensing
Abstract CUMULOS is a three-camera system flying as a secondary payload on the Integrated Solar Array and Reflectarray Antenna (ISARA) mission with the goals of researching the use of uncooled commercial infrared cameras for Earth

remote sensing and demonstrating unique nighttime remote sensing capabilities. Three separate cameras comprise the CUMULOS payload: 1) a visible (VIS) Si CMOS camera, 2) a shortwave infrared (SWIR) InGaAs camera, and 3) a longwave infrared (LWIR) vanadium oxide microbolometer. This paper reviews on-orbit operations during the past year, in-space calibration observations and techniques, and Earth remote sensing highlights from the first year of space

operations. CUMULOS operations commenced on 8 June 2018 following the successful completion of the primary ISARA mission. Some of the unique contributions from the CUMULOS payloads include: 1) demonstrating the use of bright stars for on-orbit radiometric calibration of CubeSat payloads, 2) acquisition of science-quality nighttime lights data at 130-m resolution, and 3) operating the first simple Earth observing infrared payloads successfully flown on a CubeSat. Sample remote sensing results include images of: cities at night, ship lights (including fishing vessels), oil industry gas flares, serious wildfires, volcanic activity, and daytime and nighttime clouds. The CUMULOS VIS camera has measured calibrated nightlights imagery of major cities such as Los Angeles, Singapore, Shanghai, Tokyo, Kuwait City, Abu Dhabi, Jeddah, Istanbul, and London at more than 5x the resolution of VIIRS. The utility of these data for measuring light pollution, and mapping urban growth and infrastructure development at higher resolution than

VIIRS is being studied, with an emphasis placed on Los Angeles. The “Carr”, “Camp” and “Woolsey” fires from the 2018 California fire season were imaged with all three cameras and results highlight the excellent wildfire imaging

performance that can be achieved by small sensors. The SWIR camera has exhibited extreme sensitivity to flare and fire hotspots, and was even capable of detecting airglow-illuminated nighttime cloud structures by taking advantage of the strong OH emissions within its 0.9-1.7 micron bandpass. The LWIR microbolometer has proven successful at providing cloud context imagery for our nightlights mapping experiments, can detect very large fires and the brightest flare hotspots, and can also image terrain temperature variation and urban heat islands at 300-m resolution. CUMULOS capabilities show the potential of CubeSats and small sensors to perform several VIIRS-like nighttime mission areas in which wide area coverage can be traded for greater resolution over a smaller field of view. The sensor

has been used in collaboration with VIIRS researchers to explore these mission areas and side-by-side results will be presented illustrating the capabilities as well as the limitations of small aperture LEO CubeSat systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2736
Permanent link to this record
 

 
Author Melville, H.I.A.S.; Conway, W.C.; Hardin, J.B.; Comer, C.E.; Morrison, M.L.
Title (up) Abiotic variables influencing the nocturnal movements of bobcats and coyotes Type Journal Article
Year 2020 Publication Wildlife Biology Abbreviated Journal Wildlife Biology
Volume 2020 Issue 3 Pages
Keywords Animals; Moonlight
Abstract Despite the increasing spatial, temporal and dietary overlap between bobcats Lynx rufus and coyotes Canis latrans, these species live sympatrically throughout much of North America. To determine if differential activity patterns relative to abiotic variables might influence interspecific interactions, we investigated whether these species responded differentially to crepuscular and nocturnal abiotic variables in Texas. Using GPS collars, we calculated hourly movements from sequential locations, and compared bobcat and coyote movements relative to sex, season, moonlight intensity, night period, crepuscularity and temperature. We used generalized linear mixed effects models (GLMM) to investigate the responses of bobcats and coyotes to variables associated to their nocturnal movements. Temperature and its interactions with various abiotic variables influenced bobcat movements. Biological season and its interactions with other abiotic variables influenced coyote movements. Bobcats moved shorter hourly distances than coyotes. Female bobcats moved shorter hourly distances than males. Moonlight intensity seemed to influence coyotes but not bobcats. Differential movements between bobcats and coyotes relative to night period could possibly be due behavioral avoidance of coyotes by bobcats. Reduced crepuscular activity by coyotes may be behavioral avoidance of humans. Differential responses to nocturnal variables may dampen competitive interactions between bobcats and coyotes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0909-6396 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3052
Permanent link to this record
 

 
Author Nievas Rosillo, M.
Title (up) Absolute photometry and Night Sky Brightness with all-sky cameras Type Report
Year 2013 Publication e-prints Complutense Abbreviated Journal e-prints Complutense
Volume Issue 24626 Pages
Keywords Instrumentation; skyglow; measurement; modeling
Abstract All-sky cameras have proven to be powerful tools to continuously monitoring the sky in a wide range of fields in both Astrophysics and Meteorology. In this work, we have developed a complete software pipeline to analyze the night CCD images obtained with one of such systems. This let us to study typical parameters used in Astrophysics to characterize the night sky quality, such as the Sky Brightness, the Cloud Coverage and the Atmospheric Extinction, how they evolve over the time and their variability. Using our software, we analyzed a large set of data from AstMon-OT all-sky camera at Teide Observatory. Results from this work have been applied in the support to the spanish CTA site proposal at Izaña, Tenerife and are being discussed within the CTA consortium. A comparison with data from other devices that have been used in site characterization such as the IAC80 telescope is also presented. This comparison is used to validate the results of the analysis of all-sky images. Finally, we test our software with AstMon-UCM and DSLR cameras. Some general recommendations for the use of DSLR cameras are provided.
Address Departamento de Astrofí­sica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, Madrid, Spain
Corporate Author Thesis Master's thesis
Publisher Place of Publication Madrid Editor
Language English Summary Language English Original Title
Series Editor Series Title e-prints Complutense Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1437
Permanent link to this record
 

 
Author Bará, S.; Tapia, C.; Zamorano, J.
Title (up) Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
Year 2019 Publication Sensors Abbreviated Journal Sensors
Volume 19 Issue 6 Pages 1336
Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness
Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.
Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2263
Permanent link to this record