toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zielinska-Dabkowska, K.M.; Xavia, K.; Bobkowska, K. url  doi
openurl 
  Title (up) Assessment of Citizens’ Actions against Light Pollution with Guidelines for Future Initiatives Type Journal Article
  Year 2020 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 12 Issue 12 Pages 4997  
  Keywords Society; History; Conservation; Law; Activism; Education  
  Abstract Due to the wide reach of media reports about scientific research and technological tools such as the world wide web (WWW), the Internet, and web browsers, citizens today have access to factual information about the negative impact of artificial light at night (ALAN) on their dark skies, and their health and well-being. This means they can now make educated decisions and take the necessary steps to help protect themselves and their communities from disruptive light pollution. Whilst this action is positive and welcomed, unfortunately, according to collected data, not all such initiatives have been successful. Although our understanding of this groundswell movement is deepening, further studies are required to complete a worldwide picture of the current situation. This paper therefore investigates the various actions taken by citizens, as well as the challenges, methods, and tools involved, regarding good practices initiated by grass roots activism on how to reduce existing and potential light pollution. The results of a comparative analysis of 262 international case studies (lawsuits and online petitions) reveal that, since the 1990s, there has been an increase in the number of legal cases related to light pollution due to the rise in public awareness, the availability of scientific knowledge via the Internet, and the ability to take accurate lighting measurements and perform lighting simulations. Also, in the last decade a new tool for digital participation in the form of online petitions has established a new movement of citizen action to mitigate the effects of light pollution. Based on this information, a seven-step framework involving recommendations for citizen action has been developed. It is expected that this new knowledge will benefit those citizens planning future efforts involving the development, implementation, and monitoring processes of outdoor lighting. Additionally, it might support the evolution of planning and policy approaches that are sustainable and necessary to improve the application and installation of ecologically/biologically responsible illumination for towns, cities, and natural habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3008  
Permanent link to this record
 

 
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K. url  doi
openurl 
  Title (up) Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
  Year 2019 Publication Land Abbreviated Journal Land  
  Volume 8 Issue 8 Pages 124  
  Keywords Remote Sensing  
  Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-445X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2620  
Permanent link to this record
 

 
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K. url  doi
openurl 
  Title (up) Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
  Year 2019 Publication Land Abbreviated Journal Land  
  Volume 8 Issue 8 Pages 124  
  Keywords Remote Sensing  
  Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-445X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2659  
Permanent link to this record
 

 
Author Sielachowska, M., & Zajkowski, M. url  doi
openurl 
  Title (up) Assessment of Light Pollution Based on the Analysis of Luminous Flux Distribution in Sports Facilities Type Journal Article
  Year 2019 Publication Engineer of the XXI Century Abbreviated Journal  
  Volume 70 Issue Pages 139-150  
  Keywords Lighting  
  Abstract The article attempts to assess the amount of light pollution with artificial light from sports facilities. The football stadium has been analysed, while considering a few configurations that take into account different coefficients of reflection of the luminous flux for the tribunes and the object main board. Simplified model of the football stadium was introduced to the DIALux simulation software, and then computer calculations were made for selected variants. In addition, the applicable normative requirements in the field of lighting systems were discussed and the mathematical distribution of the luminous flux in the examined sports facility was presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2504  
Permanent link to this record
 

 
Author Bijveld, M.M.C.; van Genderen, M.M.; Hoeben, F.P.; Katzin, A.A.; van Nispen, R.M.A.; Riemslag, F.C.C.; Kappers, A.M.L. url  doi
openurl 
  Title (up) Assessment of night vision problems in patients with congenital stationary night blindness Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 5 Pages e62927  
  Keywords Vision; Adolescent; Adult; Case-Control Studies; Child; *Dark Adaptation; Electroretinography; Eye Diseases, Hereditary/*physiopathology; Female; Genetic Diseases, X-Linked/*physiopathology; Humans; Light; Male; Middle Aged; Myopia/*physiopathology; Night Blindness/*physiopathology; *Night Vision; *Pattern Recognition, Visual; Surveys and Questionnaires; *Visual Acuity; Visual Fields  
  Abstract Congenital Stationary Night Blindness (CSNB) is a retinal disorder caused by a signal transmission defect between photoreceptors and bipolar cells. CSNB can be subdivided in CSNB2 (rod signal transmission reduced) and CSNB1 (rod signal transmission absent). The present study is the first in which night vision problems are assessed in CSNB patients in a systematic way, with the purpose of improving rehabilitation for these patients. We assessed the night vision problems of 13 CSNB2 patients and 9 CSNB1 patients by means of a questionnaire on low luminance situations. We furthermore investigated their dark adapted visual functions by the Goldmann Weekers dark adaptation curve, a dark adapted static visual field, and a two-dimensional version of the “Light Lab”. In the latter test, a digital image of a living room with objects was projected on a screen. While increasing the luminance of the image, we asked the patients to report on detection and recognition of objects. The questionnaire showed that the CSNB2 patients hardly experienced any night vision problems, while all CSNB1 patients experienced some problems although they generally did not describe them as severe. The three scotopic tests showed minimally to moderately decreased dark adapted visual functions in the CSNB2 patients, with differences between patients. In contrast, the dark adapted visual functions of the CSNB1 patients were more severely affected, but showed almost no differences between patients. The results from the “2D Light Lab” showed that all CSNB1 patients were blind at low intensities (equal to starlight), but quickly regained vision at higher intensities (full moonlight). Just above their dark adapted thresholds both CSNB1 and CSNB2 patients had normal visual fields. From the results we conclude that night vision problems in CSNB, in contrast to what the name suggests, are not conspicuous and generally not disabling.  
  Address Bartimeus Institute for the Visually Impaired, Zeist, The Netherlands. mbijveld@bartimeus.nl  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23658786; PMCID:PMC3643903 Approved no  
  Call Number GFZ @ kyba @ Serial 3051  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: