toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Coesfeld, J.; Kuester, T.; Kuechly, H.U.; Kyba, C.C.M. url  doi
openurl 
  Title Reducing Variability and Removing Natural Light from Nighttime Satellite Imagery: A Case Study Using the VIIRS DNB Type Journal Article
  Year 2020 Publication Sensors Abbreviated Journal Sensors  
  Volume 20 Issue 11 Pages 3287  
  Keywords Remote Sensing; Instrumentation  
  Abstract Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2988  
Permanent link to this record
 

 
Author Bará, S.; Tapia, C.; Zamorano, J. url  doi
openurl 
  Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
  Year 2019 Publication Sensors Abbreviated Journal Sensors  
  Volume 19 Issue 6 Pages 1336  
  Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness  
  Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.  
  Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2263  
Permanent link to this record
 

 
Author Kerbiriou, C.; Barré, K.; Mariton, L.; Pauwels, J.; Zissis, G.; Robert, A.; Le Viol, I. url  doi
openurl 
  Title Switching LPS to LED Streetlight May Dramatically Reduce Activity and Foraging of Bats Type Journal Article
  Year 2020 Publication Diversity Abbreviated Journal Diversity  
  Volume 12 Issue 4 Pages 165  
  Keywords Animals  
  Abstract Artificial light at night is considered a major threat to biodiversity, especially for nocturnal species, as it reduces habitat availability, quality, and functionality. Since the recent evolution in light technologies in improving luminous efficacy, developed countries are experiencing a renewal of their lighting equipment that reaches its end-of-life, from conventional lighting technologies to light emitting diodes (LEDs). Despite potential cascading impacts of such a shift on nocturnal fauna, few studies have so far dealt with the impact of the renewal of street lighting by new technologies. Specifically, only one study, by Rowse et al.2016, examined the effects of switching from widely used low pressure sodium (LPS) lamps to LEDs, using bats as biological models. This study was based on a before-after-control-impact paired design (BACIP) at 12 pairs in the UK, each including one control and one experimental streetlight. If Rowse et al. 2016 showed no effect of switching to LEDs streetlights on bat activity, the effects of respective changes in light intensity and spectrum were not disentangled when testing switch effects. Here, we conduct a retrospective analysis of their data to include these covariates in statistical models with the aim of disentangling the relative effects of these light characteristics. Our re-analysis clearly indicates that the switches in spectrum and in intensity with replacement of LPS with LED lamps have significant additive and interactive effects, on bat activity. We also show that bat activity and buzz ratio decrease with increasing LED intensity while an opposite effect is observed with LPS lamps. Hence, the loss or the gain in bat activity when lamp types, i.e., spectrum, are switched strongly depends on the initial and new lamp intensities. Our results stress the need to consider simultaneously the effects of changes in the different lights characteristics when street lighting changes. Because switches from LPS to LED lamps can lead to an increase in light intensity, such technological changes may involve a reduction of bat activity in numerous cases, especially at high LED intensities. Since we are currently at an important crossroad in lighting management, we recommend to limit LED intensity and improve its spectral composition toward warmer colors to limit potential deleterious impacts on bat activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-2818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2892  
Permanent link to this record
 

 
Author Sung, C. Y., & Kim, Y.-J. url  doi
openurl 
  Title Analysis of the Status of Light Pollution and its Potential Effect on Ecosystem of the Deogyusan National Park Type Journal Article
  Year 2020 Publication Korean Journal of Environment and Ecology Abbreviated Journal  
  Volume 34 Issue 1 Pages 63-71  
  Keywords Conservation; Ecology; Remote Sensing  
  Abstract This study characterized the spatial and seasonal patterns of light pollution in the Deogyusan National Park and examined the potential effects of light pollution on ecosystems in the park using light intensities derived from VIIRS (Visible Infrared Imaging Radiometer Suite) DNB (Day and Night Band) nightlight images collected in January and August 2018. Results showed that the Muju Deogyusan resort had the greatest light intensity than other sources of light pollution in the park, and light intensity of the resort was much higher in January than in August, suggesting that artificial lights in ski slopes and facilities were the major source of light pollution in the park. An analysis of an urban-natural light pollution gradient along a neighboring urban area through the inside of the park indicated that light radiated from a light pollution source permeated for up to 1km into the adjacent area and contaminated the edge area of the park. Of the legally protected species whose distributions were reported in literature, four mammals (Martes flavigula, Mustela nivalis, Prionailurus bengalensis, Pteromys volans aluco), two birds (Falco subbuteo, Falco tinnunculus), and nine amphibians and reptiles (Onychodactylus koreanus, Hynobius leechii, Karsenia koreana, Rana dybowskii, Rana huanrenensis, Elaphe dione, Rhabdophis tigrinus, Gloydius ussuriensis, Gloydius saxatilis) inhabited light-polluted areas. Of those species inhabiting light-polluted areas, nocturnal species, such as Prionailurus bengalensis and Pteromys volans aluco, in particular, were vulnerable to light pollution. These results implied that protecting ecosystems from light pollution in national parks requires managing nighttime light in the parks and surrounding areas and making a plan to manage nighttime light pollution by taking into account ecological characteristics of wild animals in the parks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2948  
Permanent link to this record
 

 
Author Nam, K. H., Kim, C. H., & Nam, K. H. url  doi
openurl 
  Title A Research on the Improvement of Visibility Using Low Deck Lighting in Bad Weather Type Journal Article
  Year 2020 Publication Journal of the Korean Institute of Electrical and Electronic Material Engineers Abbreviated Journal  
  Volume 33 Issue 3 Pages 186-193  
  Keywords Lighting  
  Abstract We investigate a fog-detection CCT control system using low deck lighting as a solution to the forward visibility of pole-type street lamps employed on existing roads. The lighting standards were met with a light source that has less compared with those of pole-type street lamps. The results show that the transmission rate was increased by changing the color temperature by automatically recognizing fog in bad weather and minimizing the phenomenon of lighting. In addition, it was allowed to create a safer and more comfortable driving environment for drivers owing to flicker or light pollution of existing pole-type street lamps. As a result, if lighting is used at a lower level than pole-type street lamps, the accident rate caused by securing the driver's forward visibility can be reduced sharply and existing problems can be resolved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2953  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: