toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L. url  doi
openurl 
  Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
  Year 2019 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume in press Issue Pages 1365-2435.13485  
  Keywords Ecology; Bacteria; Ecosystems  
  Abstract Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbors, ports and marinas).

2.By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3.Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4.Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5.ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
 
  Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi(at)unipi.it  
  Corporate Author Thesis  
  Publisher British Ecological Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2746  
Permanent link to this record
 

 
Author Nanjo, S.; Hozumi, Y.; Hosokawa, K.; Kataoka, R.; Miyoshi, Y.; Oyama, S.‐ichiro; Ozaki, M.; Shiokawa, K.; Kurita, S. url  doi
openurl 
  Title Fine‐Scale Visualization of Aurora in a Wide Area Using Color Digital Camera Images From the International Space Station Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Space Physics Abbreviated Journal J. Geophys. Res. Space Physics  
  Volume 125 Issue 3 Pages  
  Keywords natural light; aurora  
  Abstract The full‐color photographs of aurora have been taken with digital single‐lens reflex cameras mounted on the International Space Station (ISS). Since these photographs do not have accurate time and geographical information, in order to use them as scientific data, it is necessary to calibrate the imaging parameters (such as looking direction and angle of view of the camera) of the photographs. For this purpose, we calibrated the imaging parameters using a city light image taken from the Defense Meteorological Satellite Program satellite following the method of Hozumi et al. (2016, https://doi.org/10.1186/s40623-016-0532-z). We mapped the photographs onto the geographic coordinate system using the calibrated imaging parameters. To evaluate the accuracy of the mapping, we compared the aurora taken simultaneously from ISS and ground. Comparing the spatial structure of discrete aurora and the temporal variation of pulsating aurora, the accuracy of the data set is less than 0.3 s in time and less than 5 km in space in the direction perpendicular to the looking direction of the camera. The generated data set has a wide field of view ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-00011,100  urn:x-wiley:jgra:media:jgra55570:jgra55570-math-0002 900 km), and their temporal resolution is less than 1 s. Not only that, the field of view can sweep a wide area ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-00033,000 km in longitude) in a short time ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-000410 min). Thus, this new imaging capability will enable us to capture the evolution of fine‐scale spatial structure of aurora in a wide area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9380 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2851  
Permanent link to this record
 

 
Author Jechow, A.; Hölker, F. url  doi
openurl 
  Title How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night‐time light measurements Type Journal Article
  Year 2019 Publication Wiley Interdisciplinary Reviews: Water Abbreviated Journal WIREs Water  
  Volume 6 Issue 6 Pages e1388  
  Keywords Ecology; Skyglow; Review  
  Abstract Freshwater ecosystems are hotspots of biodiversity. They are of major importance for humans because they provide vital ecosystem services. However, as humans tend to settle near freshwaters and coastal areas, these ecosystems are also over‐proportionally affected by anthropogenic stressors. Artificial light at night can occur as a form of environmental pollution, light pollution. Light pollution affects large areas on a worldwide scale, is growing exponentially in radiance and extent and can have diverse negative effects on flora, fauna and on human health. While the majority of ecological studies on artificial light at night covered terrestrial systems, the studies on aquatic light pollution have unraveled impact on aquatic organisms, ecosystem functions as well as land‐water‐interactions. Although monitoring of light pollution is routinely performed from space and supported by ground‐based measurements, the extent and the amount of artificial light at night affecting water bodies is still largely unknown. This information, however, is essential for the design of future laboratory and field experiments, to guide light planners and to give recommendations for light pollution regulations. We analyze this knowledge gap by reviewing night‐time light measurement techniques and discuss their current obstacles in the context of water bodies. We also provide an overview of light pollution studies in the aquatic context. Finally, we give recommendations on how comprehensive night‐time light measurements in aquatic systems, specifically in freshwater systems, should be designed in the future.  
  Address Ecohydrology, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; andreas.jechow(at)gmx.de  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2049-1948 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2688  
Permanent link to this record
 

 
Author Horton, K.G.; Nilsson, C.; Van Doren, B.M.; La Sorte, F.A.; Dokter, A.M.; Farnsworth, A. url  doi
openurl 
  Title Bright lights in the big cities: migratory birds’ exposure to artificial light Type Journal Article
  Year 2019 Publication Frontiers in Ecology and the Environment Abbreviated Journal Front Ecol Environ  
  Volume 17 Issue 4 Pages 209-214  
  Keywords Animals; Birds; migratory birds  
  Abstract Many species of migratory birds have evolved the ability to migrate at night, and the recent and rapid expansion of artificial light at night has markedly altered the nighttime sky through which they travel. Migrating birds regularly pass through heavily illuminated landscapes, and bright lights affect avian orientation. But risks to migrating birds from artificial light are not spatially or temporally uniform, representing a challenge for mitigating potential hazards and developing action plans to catalog risks at continental scales. We leveraged over two decades of remote‐sensing data collected by weather surveillance radar and satellite‐based sensors to identify locations and times of year when the highest numbers of migrating birds are exposed to light pollution in the contiguous US. Our continental‐scale quantification of light exposure provides a novel opportunity for dynamic and targeted conservation strategies to address the hazards posed by light pollution to nocturnally migrating birds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1540-9295 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2285  
Permanent link to this record
 

 
Author Walker II, W.H.; Meléndez‐Fernández, O.H.; Nelson, R.J.; Reiter, R.J. url  doi
openurl 
  Title Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 9 Issue 17 Pages 10044-10054  
  Keywords Animals; Review; Photoperiod  
  Abstract The Earth's surface temperature is rising, and precipitation patterns throughout the Earth are changing; the source of these shifts is likely anthropogenic in nature. Alterations in temperature and precipitation have obvious direct and indirect effects on both plants and animals. Notably, changes in temperature and precipitation alone can have both advantageous and detrimental consequences depending on the species. Typically, production of offspring is timed to coincide with optimal food availability; thus, individuals of many species display annual rhythms of reproductive function. Because it requires substantial time to establish or re‐establish reproductive function, individuals cannot depend on the arrival of seasonal food availability to begin breeding; thus, mechanisms have evolved in many plants and animals to monitor and respond to day length in order to anticipate seasonal changes in the environment. Over evolutionary time, there has been precise fine‐tuning of critical photoperiod and onset/offset of seasonal adaptations. Climate change has provoked changes in the availability of insects and plants which shifts the timing of optimal reproduction. However, adaptations to the stable photoperiod may be insufficiently plastic to allow a shift in the seasonal timing of bird and mammal breeding. Coupled with the effects of light pollution which prevents these species from determining day length, climate change presents extreme evolutionary pressure that can result in severe deleterious consequences for individual species reproduction and survival. This review describes the effects of climate change on plants and animals, defines photoperiod and the physiological events it regulates, and addresses the consequences of global climate change and a stable photoperiod.  
  Address Department of Neuroscience, West Virginia University, Morgantown, WV, USA; William.Walker2(at)hsc.wvu.edu  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2619  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: