toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Kumar, P.; Rehman, S.; Sajjad, H.; Tripathy, B.R.; Rani, M.; Singh, S. url  doi
openurl 
  Title Analyzing trend in artificial light pollution pattern in India using NTL sensor's data Type Journal Article
  Year 2019 Publication Urban Climate Abbreviated Journal Urban Climate  
  Volume 27 Issue Pages 272-283  
  Keywords Remote Sensing; India; DMSP; DMSP-OLS  
  Abstract Exponential growth of population and the resultant rapid rate of urbanization and industrialization in India have significantly transformed its nighttime light environment. The study makes an attempt to analyze the spatio-temporal pattern of light pollution and its causative actors in a fast-developing economy. We utilized nighttime light data from 1993 to 2013 and calibrated through linear regression. Ten patches of major changes from the whole study area were selected to assess the intensity of light pollution at regional scale. Spatial analysis of light pollution in selected patches revealed that New Delhi, Telangana, Maharashtra, Karnataka and Uttar Pradesh experienced increase in very high light pollution intensity. West Bengal, Gujarat and Tamil Nadu witnessed a remarkable change from low to high light pollution. Urban expansion, industrial development and air pollution are main drivers for increasing light pollution. Strong correlation was found between light pollution and digital numbers (DN) values at regional scale. The maps generated through Defense Meteorological Satellite Program Operational Line Scanner Night Time Light data not only helped in assessing the intensity of light pollution but also identified its causative actors.The results of study can effectively be utilized for setting priorities of environmental protection in different geographical regions at various scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2144  
Permanent link to this record
 

 
Author Mpakairi, K.S.; Muvengwi, J. url  doi
openurl 
  Title Night-time lights and their influence on summer night land surface temperature in two urban cities of Zimbabwe: A geospatial perspective Type Journal Article
  Year 2019 Publication Urban Climate Abbreviated Journal Urban Climate  
  Volume 29 Issue Pages 100468  
  Keywords Remote Sensing  
  Abstract Owing to the developments that exist in urban landscapes, urban areas experience climates that are different from their surroundings even when in the same climatic region. This is a prominent phenomenon in most urban areas and is commonly known as Surface Urban Heat Island (SUHI). An understanding of some of the drivers of SUHI is imperative for cities worldwide if they endeavor to suppress the socio-economic mishaps related to extremely high UHI. In this study, we sought to explain the drivers of SUHI in two developing cities in Zimbabwe using remote sensing data. We do this through the use of a classification and regression model. The model used climate, land descriptors and anthropogenic activity data as predictor variables against summer night land surface temperature. Using the coefficient of determination (R2) and the root mean square error (RMSE) for evaluation, modelled SUHI was strongly related to actual SUHI. We also found out that night-time lights, a proxy of anthropogenic activity, contributed more to summer night surface urban heat island as compared to other variables used in the study. This study adds more knowledge on the likely drivers of UHI for southern African cities. By identifying SUHI drivers in urban cities, it is plausible to formulate policies or initiatives that regulate extreme summer night SUHI.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2497  
Permanent link to this record
 

 
Author Elvidge, C.D.; Bazilian, M.D.; Zhizhin, M.; Ghosh, T.; Baugh, K.; Hsu, F.-C. url  doi
openurl 
  Title The potential role of natural gas flaring in meeting greenhouse gas mitigation targets Type Journal Article
  Year 2018 Publication Energy Strategy Reviews Abbreviated Journal Energy Strategy Reviews  
  Volume 20 Issue Pages 156-162  
  Keywords Remote Sensing  
  Abstract In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211467X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2055  
Permanent link to this record
 

 
Author Liu, M.; Li, W.; Zhang, B.; Hao, Q.; Xiaowei, G.; Yuchuan, L. url  doi
openurl 
  Title Research on the Influence of Weather Conditions on Urban Night Light Environment Type Journal Article
  Year 2019 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society  
  Volume 54 Issue Pages 101980  
  Keywords Skyglow; Weather; sky brightness; Urban  
  Abstract The increasingly serious urban light pollution has deepened the relevant research, and weather conditions indeed have great impact on the urban night light environment. Based on the SQM instrument, fish-eye camera and weather-related systems, this paper analyzes the changing law of night sky with time and weather. The brightness of the typical clear night sky changes regularly with time, and mainly includes five phases: rapid decline phase, slow decline phase, unstable decline phase, smooth phase, and rapid increase phase of sky brightness. In two phases of the smooth sky brightness, the average sky brightness in the high and low brightness phase respectively is 18.123 mag/arcsecond2 and 18.82 mag/arcsecond2, and about 15 times and 8 times higher than those of the natural night sky. This paper establishes the regression model of typical clear night sky brightness in rapid decline phase and rapid increase phase of sky brightness. The sky magnitude brightness in rainy weather is much lower than that in clear weather, the difference is about 3 mag/arcsecond2, the brightness can be reach 15.63 mag / arcsecond2; the average magnitude brightness in snowy days is about 0.17 mag/arcsecond2 higher than that in cloudy weather. There is a significant correlation among the air quality index, the ground illumination ratio of moon, the atmospheric visibility and the sky brightness. The deepened air pollution can also intensify light pollution, which can increase to 3 and 10 times higher than the night sky brightness under the moderate and severe air pollution. The lunar cycle has the least impact on light pollution in clear days, the sky brightness with the full moon is about 2 and 3 times higher than that without the moon.  
  Address Corresponding author at: No.2, Ling Gong Road, Gan Jing Zi District, School of Architecture and Fine Art, Dalian University of Technology, Dalian, Liao Ning Province 116024, China; iumingyitj(at)163.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2759  
Permanent link to this record
 

 
Author Doulos, L.T.; Sioutis, I.; Kontaxis, P.; Zissis, G.; Faidas, K. url  doi
openurl 
  Title A decision support system for assessment of street lighting tenders based on energy performance indicators and environmental criteria: Overview, methodology and case study Type Journal Article
  Year 2019 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society  
  Volume 51 Issue Pages 101759  
  Keywords Lighting; Policy  
  Abstract While LEDs are now the most efficient light sources, their adoption in the road lighting design has been delayed due to a variety of reasons such as malpractice, huge number of inappropriate luminaires, missing technical information and ineffective policies. An example is the, low luminous efficacy values, which confuse the decision makers for national roads. The new part of EN13201-5 describes many energy performance indicators, which are still not used in street light projects or in lighting simulation tools. The aim of this paper is a) to present the significance of using these indicators through a decision tool, capable to evaluate a number of lighting designs in a lighting tender and b) to propose an evaluation method as part of a future energy policy including environmental criteria. A case study is also presented. The results show that the aforementioned decision tool is necessary in order to evaluate the ranking of the corresponding offers. Thus, increased energy savings could be achieved together with environmental benefits. In the case examined, the best solution resulted in 72.1% energy savings and CO2 emission reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2210-6707 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2609  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: