toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Atchoi, E.; Mitkus, M.; Rodríguez, A. url  doi
openurl 
  Title Is seabird light‐induced mortality explained by the visual system development? Type Journal Article
  Year 2020 Publication Conservation Science and Practice Abbreviated Journal Conservat Sci and Prac  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract Seabirds are impacted by coastal light pollution, leading to massive mortality events. Juveniles comprise the majority of affected individuals, while adults are only seldom grounded and reported in rescue programs. We propose a connection between visual system development of burrow nesting seabirds and the observed higher vulnerability to light pollution by a specific age group. We illustrate the need for multidisciplinary research to better understand and further mitigate light-induced mortality.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-4854 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2845  
Permanent link to this record
 

 
Author Edensor, T.; Andrews, J. url  doi
openurl 
  Title Walking the creek: reconnecting place through light projection Type Journal Article
  Year 2019 Publication Geographical Research Abbreviated Journal Geographical Research  
  Volume 57 Issue 3 Pages 263-274  
  Keywords Society; Psychology; Australia; public amenity; placemaking; light projection  
  Abstract In this paper, we explore how a light projection sought to convey a range of qualities: conviviality, a sense of place, playfulness, defamiliarisation, and the affective and sensory capacities that were experienced through walking in the distinctive, liminal realm of Bendigo Creek in Victoria, Australia. The projection aspired to solicit a sensory and affective empathy that chimed with the experiences of an earlier event in which dozens of pedestrians were filmed walking in the creek. The projection contributed to a local campaign to reappraise the much‐maligned creek as a local public amenity. We discuss the productive potential of solitary and collective walking and, subsequently, the attributes of the projection in its static and mobile manifestation. In so doing, we suggest that publicly engaged, inclusive, creative practice can offer potent place‐making possibilities.  
  Address School of Geography, University of Melbourne, Carlton, Victoria, Australia; t.edensor(at)mmu.ac.uk  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-5863 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2435  
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L. url  doi
openurl 
  Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
  Year 2019 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume in press Issue Pages 1365-2435.13485  
  Keywords Ecology; Bacteria; Ecosystems  
  Abstract Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbors, ports and marinas).

2.By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3.Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4.Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5.ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
 
  Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi(at)unipi.it  
  Corporate Author Thesis  
  Publisher British Ecological Society Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2746  
Permanent link to this record
 

 
Author Nanjo, S.; Hozumi, Y.; Hosokawa, K.; Kataoka, R.; Miyoshi, Y.; Oyama, S.‐ichiro; Ozaki, M.; Shiokawa, K.; Kurita, S. url  doi
openurl 
  Title Fine‐Scale Visualization of Aurora in a Wide Area Using Color Digital Camera Images From the International Space Station Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Space Physics Abbreviated Journal J. Geophys. Res. Space Physics  
  Volume 125 Issue 3 Pages  
  Keywords natural light; aurora  
  Abstract The full‐color photographs of aurora have been taken with digital single‐lens reflex cameras mounted on the International Space Station (ISS). Since these photographs do not have accurate time and geographical information, in order to use them as scientific data, it is necessary to calibrate the imaging parameters (such as looking direction and angle of view of the camera) of the photographs. For this purpose, we calibrated the imaging parameters using a city light image taken from the Defense Meteorological Satellite Program satellite following the method of Hozumi et al. (2016, https://doi.org/10.1186/s40623-016-0532-z). We mapped the photographs onto the geographic coordinate system using the calibrated imaging parameters. To evaluate the accuracy of the mapping, we compared the aurora taken simultaneously from ISS and ground. Comparing the spatial structure of discrete aurora and the temporal variation of pulsating aurora, the accuracy of the data set is less than 0.3 s in time and less than 5 km in space in the direction perpendicular to the looking direction of the camera. The generated data set has a wide field of view ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-00011,100  urn:x-wiley:jgra:media:jgra55570:jgra55570-math-0002 900 km), and their temporal resolution is less than 1 s. Not only that, the field of view can sweep a wide area ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-00033,000 km in longitude) in a short time ( urn:x-wiley:jgra:media:jgra55570:jgra55570-math-000410 min). Thus, this new imaging capability will enable us to capture the evolution of fine‐scale spatial structure of aurora in a wide area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-9380 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2851  
Permanent link to this record
 

 
Author Jechow, A.; Hölker, F. url  doi
openurl 
  Title How dark is a river? Artificial light at night in aquatic systems and the need for comprehensive night‐time light measurements Type Journal Article
  Year 2019 Publication Wiley Interdisciplinary Reviews: Water Abbreviated Journal WIREs Water  
  Volume 6 Issue 6 Pages e1388  
  Keywords Ecology; Skyglow; Review  
  Abstract Freshwater ecosystems are hotspots of biodiversity. They are of major importance for humans because they provide vital ecosystem services. However, as humans tend to settle near freshwaters and coastal areas, these ecosystems are also over‐proportionally affected by anthropogenic stressors. Artificial light at night can occur as a form of environmental pollution, light pollution. Light pollution affects large areas on a worldwide scale, is growing exponentially in radiance and extent and can have diverse negative effects on flora, fauna and on human health. While the majority of ecological studies on artificial light at night covered terrestrial systems, the studies on aquatic light pollution have unraveled impact on aquatic organisms, ecosystem functions as well as land‐water‐interactions. Although monitoring of light pollution is routinely performed from space and supported by ground‐based measurements, the extent and the amount of artificial light at night affecting water bodies is still largely unknown. This information, however, is essential for the design of future laboratory and field experiments, to guide light planners and to give recommendations for light pollution regulations. We analyze this knowledge gap by reviewing night‐time light measurement techniques and discuss their current obstacles in the context of water bodies. We also provide an overview of light pollution studies in the aquatic context. Finally, we give recommendations on how comprehensive night‐time light measurements in aquatic systems, specifically in freshwater systems, should be designed in the future.  
  Address Ecohydrology, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; andreas.jechow(at)gmx.de  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2049-1948 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2688  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: