toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Tilottama, G., Sutton, P. C., & Elvidge, C. D. url  openurl
  Title Informal Economy and Remittance Estimates of India Using Nighttime Imagery Type Journal Article
  Year 2010 Publication International Journal of Ecological Economics & Statistics Abbreviated Journal  
  Volume 17 Issue Pages  
  Keywords Remote Sensing; Economics  
  Abstract Accurate estimates of the magnitude and spatial distribution of both formal and informal economic activity have many useful applications. Developing alternative methods for making estimates of these economic activities may prove to be useful when other measures are of suspect accuracy or unavailable. This research explores the potential for estimating the formal and informal economy for India using known relationships between the spatial patterns of nighttime satellite imagery and economic activity in the United States (U.S.). Regression models have been developed between spatial patterns of nighttime imagery and Adjusted Official Gross State Product (AGSP) for the states of the U.S. The slope and intercept parameters derived from the regression models of the U.S. were blindly applied to India, resulting in an underestimation of Gross State Income (GSI) for each state and Union Territory (UT) of India because of the lower level of urbanization in India in comparison to the U.S. However, a comparison of estimated GSI from the nighttime lights image and the official Gross State Product (GSP) of the states and UTs of India indicates a high correlation between them (r = 0.93). The different levels of urbanization (i.e. percent of population in urban areas) in the U.S. and India are used to adjust the Estimated Gross Domestic Income (EGDI) by multiplying by the ratio of the percentage of the population in urban areas for the two countries. This gives the Adjusted Estimated Gross Domestic Income of India (AEGDI), which is compared with the official Gross National Income (GNI) estimates of India’s states and UTs. The results suggest that the magnitude of India’s informal economy and the inflow of remittances are 150 percent larger than their existing official estimates in the GNI.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2554  
Permanent link to this record
 

 
Author Kinzey, B. R.; Smalley, E.; Ghosh, S.; Tuenge, J. R.; Pipkin, A.; Trevino, K. url  doi
openurl 
  Title Lighting and Power Upgrade Recommendations for U.S. National Park Service Caribbean Units Type Journal Article
  Year 2019 Publication National Park Service Caribbean Units Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; Conservation; Ecology; Skyglow; Planning  
  Abstract The U.S. National Park Service (NPS) maintains and operates numerous park units along the Eastern Seaboard of the United States, extending into the Caribbean to Commonwealth territories like Puerto Rico and the U.S. Virgin Islands (USVI). Several of these units were in the direct path of hurricanes Irma and Maria during the 2017 hurricane season and suffered considerable damage, including power outages, structural damage, and destroyed equipment. In February 2018, a task force deployed to three locations in the Caribbean to assess hurricane damage to the existing lighting systems and energy infrastructure. The primary objective was providing related recommendations for resiliency upgrades to the lighting and electrical supply systems, with special added emphasis on the numerous goals, objectives, and requirements of the NPS (such as protecting night skies, wildlife, wilderness character, cultural resources, etc.). Numerous opportunities exist for simultaneously increasing resiliency and preserving natural environments within these sensitive locations, and technological approaches that work in the extreme conditions encountered here should readily translate to many other less complex sites across the greater park system. Ultimately, care and attention to detail in implementation are the most important underlying requirements for success across the myriad needs likely encountered at these sites, once commitment to resolving them has been secured  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2626  
Permanent link to this record
 

 
Author Burggraaff, O., Schmidt, N., Zamorano, J., Pauly, K., Pascual, S., Tapia, C., Spyrakos, E., & Snik, F. url  openurl
  Title Standardized spectral and radiometric calibration of consumer cameras Type Journal Article
  Year 2019 Publication Optical Express Abbreviated Journal  
  Volume 27 Issue 14 Pages 19075-19101  
  Keywords Instrumentation  
  Abstract Consumer cameras, particularly onboard smartphones and UAVs, are now commonly used as scientific instruments. However, their data processing pipelines are not optimized for quantitative radiometry and their calibration is more complex than that of scientific cameras. The lack of a standardized calibration methodology limits the interoperability between devices and, in the ever-changing market, ultimately the lifespan of projects using them. We present a standardized methodology and database (SPECTACLE) for spectral and radiometric calibrations of consumer cameras, including linearity, bias variations, read-out noise, dark current, ISO speed and gain, flat-field, and RGB spectral response. This includes golden standard ground-truth methods and do-it-yourself methods suitable for non-experts. Applying this methodology to seven popular cameras, we found high linearity in RAW but not JPEG data, inter-pixel gain variations >400% correlated with large-scale bias and read-out noise patterns, non-trivial ISO speed normalization functions, flat-field correction factors varying by up to 2.79 over the field of view, and both similarities and differences in spectral response. Moreover, these results differed wildly between camera models, highlighting the importance of standardization and a centralized database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2652  
Permanent link to this record
 

 
Author Gu, Y., Uprety, S., Blonski, S., Zhang, B., & Cao, C. url  doi
openurl 
  Title Improved algorithm for determining the Visible Infrared Imaging Radiometer Suite Day/Night Band high-gain stage dark offset free from light contamination Type Journal Article
  Year 2019 Publication Applied Optics Abbreviated Journal  
  Volume 58 Issue 6 Pages 1400-1407  
  Keywords Remote Sensing; Instrumentation  
  Abstract Dark offset is one of the key parameters for Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) high-gain stage (HGS) radiometric calibration, whose accuracy strongly impacts applications of DNB low-light detection for Earth observation at nighttime. Currently, DNB observation of the VIIRS onboard calibrator blackbody (OBCBB) view, together with its observation of deep space during the spacecraft pitch maneuver performed early in the mission, has been used to compute the HGS dark offset continuously. However, the relationship between the DNB OBCBB data and the Earth view (EV) data is unclear due to electronic timing differences between these two views. It is questionable whether the DNB OBCBB data can monitor the EV HGS dark offset change. Through comprehensive analysis of the DNB OBCBB data and EV data acquired from the monthly special acquisitions known as the VIIRS recommended operating procedures (VROPs), we have shown that the OBCBB data can only track the dark current component of the DNB HGS EV dark offset, instead of the total dark offset. The DNB observation of deep space during the spacecraft pitch maneuver was also contaminated by starlight. With such background, in this paper we propose an improved algorithm for determining the DNB HGS dark offset. By combined use of the DNB OBCBB data and the DNB VROP data, the generated DNB HGS dark offset is both free from light contamination and capable of tracking continuous drift. The improved algorithm could potentially improve the DNB radiometric performance at low radiance level. Our results provide a solid theoretical basis for dark offset calibration of the VIIRS DNB onboard Suomi National Polar-Orbiting Partnership satellite and the following Joint Polar Satellite System satellites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2358  
Permanent link to this record
 

 
Author Tauc, M.J.; Fristrup, K.M.; Repasky, K.S.; Shaw, J.A. url  doi
openurl 
  Title Field demonstration of a wing-beat modulation lidar for the 3D mapping of flying insects Type Journal Article
  Year 2019 Publication OSA Continuum Abbreviated Journal OSA Continuum  
  Volume 2 Issue 2 Pages 332  
  Keywords Instrumentation; Animals  
  Abstract We describe a wing-beat modulation lidar system designed for the 3D mapping of flying insects in ecological or entomological studies. To better understand the signals from this instrument, we analyzed simulated signals to identify how they were affected by various imperfections, such as variations in the spacing and amplitude of each individual wing-beat reflection. In addition, a radiometric model was used to estimate signal-to-noise ratio to gain insight into the relationships between the optical system design and insect parameters (e.g., wing size, reflectivity, or diffusivity).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-7519 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2209  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: