toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Lin, J.; Shi, W. url  doi
openurl 
  Title Statistical Correlation between Monthly Electric Power Consumption and VIIRS Nighttime Light Type Journal Article
  Year 2020 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 9 Issue 1 Pages 32  
  Keywords Remote Sensing  
  Abstract The nighttime light (NTL) imagery acquired from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) enables feasibility of investigating socioeconomic activities at monthly scale, compared with annual study using nighttime light data acquired from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS). This paper is the first attempt to discuss the quantitative correlation between monthly composite VIIRS DNB NTL data and monthly statistical data of electric power consumption (EPC), using 14 provinces of southern China as study area. Two types of regressions (linear regression and polynomial regression) and nine kinds of NTL with different treatments are employed and compared in experiments. The study demonstrates that: (1) polynomial regressions acquire higher reliability, whose average R square is 0.8816, compared with linear regressions, whose average R square is 0.8727; (2) regressions between denoised NTL with threshold of 0.3 nW/(cm2·sr) and EPC steadily exhibit the strongest reliability among the nine kinds of processed NTL data. In addition, the polynomial regressions for 12 months between denoised NTL with threshold of 0.3 nW/(cm2·sr) and EPC are constructed, whose average values of R square and mean absolute relative error are 0.8906 and 16.02%, respectively. These established optimal regression equations can be used to accurately estimate monthly EPC of each province, produce thematic maps of EPC, and analyze their spatial distribution characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2820  
Permanent link to this record
 

 
Author Wang,; Sutton,; Qi, url  doi
openurl 
  Title Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery Type Journal Article
  Year 2019 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 8 Issue 12 Pages 580  
  Keywords Remote Sensing  
  Abstract Frequent and rapid spatially explicit assessment of socioeconomic development is critical for achieving the Sustainable Development Goals (SDGs) at both national and global levels. Over the past decades, scientists have proposed many methods for estimating human activity on the Earth’s surface at various spatiotemporal scales using Defense Meteorological Satellite Program Operational Line System (DMSP-OLS) nighttime light (NTL) data. However, the DMSP-OLS NTL data and the associated processing methods have limited their reliability and applicability for systematic measuring and mapping of socioeconomic development. This study utilized Visible Infrared Imaging Radiometer Suite (VIIRS) NTL and the Isolation Forest machine learning algorithm for more intelligent data processing to capture human activities. We used machine learning and NTL data to map gross domestic product (GDP) at 1 km2. We then used these data products to derive inequality indexes (e.g., Gini coefficients) at nationally aggregate levels. This flexible approach processes the data in an unsupervised manner at various spatial scales. Our assessments show that this method produces accurate subnational GDP data products for mapping and monitoring human development uniformly across the globe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2787  
Permanent link to this record
 

 
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K. url  doi
openurl 
  Title Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
  Year 2019 Publication Land Abbreviated Journal Land  
  Volume 8 Issue 8 Pages 124  
  Keywords Remote Sensing  
  Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-445X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2620  
Permanent link to this record
 

 
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K. url  doi
openurl 
  Title Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
  Year 2019 Publication Land Abbreviated Journal Land  
  Volume 8 Issue 8 Pages 124  
  Keywords Remote Sensing  
  Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-445X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2659  
Permanent link to this record
 

 
Author Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E. url  doi
openurl 
  Title Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
  Year 2019 Publication Water Abbreviated Journal Water  
  Volume 11 Issue 7 Pages 1512  
  Keywords Plants  
  Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4441 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: