toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E. url  doi
openurl 
  Title The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue 21 Pages 6160  
  Keywords Energy; Lighting; Society  
  Abstract In the 21st century, the notion of “sustainable lighting” is closely associated with LED technology. In the past ten years, municipalities and private light users worldwide have installed light-emitting diodes in urban spaces and public streets to save energy. Yet an increasing body of interdisciplinary research suggests that supposedly sustainable LED installations are in fact unsustainable, because they increase light pollution. Paradoxically, blue-rich cool-white LED lighting, which is the most energy-efficient, also appears to be the most ecologically unfriendly. Biologists, physicians and ecologists warn that blue-rich LED light disturbs the circadian day-and-night rhythm of living organisms, including humans, with potential negative health effects on individual species and whole ecosystems. Can the paradox be solved? This paper explores this question based on our transdisciplinary research project Light Pollution—A Global Discussion. It reveals how light pollution experts and lighting professionals see the challenges and potential of LED lighting from their different viewpoints. This expert feedback shows that “sustainable LED lighting” goes far beyond energy efficiency as it raises complex design issues that imply stakeholder negotiation. It also suggests that the LED paradox may be solved in context, but hardly in principle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2824  
Permanent link to this record
 

 
Author Guanglei, W.; Ngarambe, J.; Kim, G. url  doi
openurl 
  Title A Comparative Study on Current Outdoor Lighting Policies in China and Korea: A Step toward a Sustainable Nighttime Environment Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue 14 Pages 3989  
  Keywords Lighting; Policy  
  Abstract Light pollution is a serious environmental issue with many adverse effects on human health and the ecosystem as a whole. Accordingly, many countries have issued laws and regulations to limit the effects of artificial lighting at night (ALAN). The Republic of Korea and China are among the few countries that have drafted laws to curb light pollution. In the present study, we gathered data related to light pollution regulations and ordinances in both China and Korea. We then carried out a comparative analysis of the light pollution laws of both countries. We found that, although the two countries share a similar socio-economic background, they have different approaches to the issue of light pollution. The information provided in this study serves as a guideline to countries that wish to develop their own light pollution policies. In addition, the conclusions provided in our study offer potential improvements to local and national light pollution policies in both the Republic of Korea and China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2602  
Permanent link to this record
 

 
Author Zielinska-Dabkowska, K.M.; Xavia, K. url  doi
openurl 
  Title Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue 12 Pages 3446  
  Keywords Lighting  
  Abstract Urban environments have become significantly brighter and more illuminated, and cities now consider media architecture and non-static, self-luminous LED displays an essential element of their strategy to attract residents, visitors, and tourists in the hours after dark. Unfortunately, most often, they are not designed with care, consideration, and awareness, nor do they support the visual wellbeing and circadian rhythms of humans. They also increase light pollution which has an adverse effect on the environment. The aim of this study was to estimate the scale of the negative impact of 28 non-static, self-luminous LED shop window displays within a real-life city context along the main shopping street Banhofstrasse in Zurich, Switzerland. An experimental field measurement survey investigation was performed to identify visual luminance with commonly available tools such as a luminance meter and a digital reflex camera for luminance photography. Moreover, the most important global approaches to reduce light pollution were evaluated in the form of existing guidelines, technical standards, and laws, all of which should be considered when specifying illuminated digital advertisements. A literature review and survey results both confirmed the extent of the problem and highlighted, too, the need to better measure, apply, and manage this new technology. The authors’ proposal for improvements involve practical recommendations for the design and implementation of future projects which can positively guide and direct this growing trend.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2601  
Permanent link to this record
 

 
Author Bará, S.; Lima, R.C.; Zamorano, J. url  doi
openurl 
  Title Monitoring Long-Term Trends in the Anthropogenic Night Sky Brightness Type Journal Article
  Year 2019 Publication Sustainability Abbreviated Journal Sustainability  
  Volume 11 Issue 11 Pages 3070  
  Keywords Skyglow  
  Abstract Monitoring long-term trends in the evolution of the anthropogenic night sky brightness is a demanding task due to the high dynamic range of the artificial and natural light emissions and the high variability of the atmospheric conditions that determine the amount of light scattered in the direction of the observer. In this paper, we analyze the use of a statistical indicator, the mFWHM, to assess the night sky brightness changes over periods of time larger than one year. The mFWHM is formally defined as the average value of the recorded magnitudes contained within the full width at half-maximum region of the histogram peak corresponding to the scattering of artificial light under clear skies in the conditions of a moonless astronomical night (sun below −18°, and moon below −5°). We apply this indicator to the measurements acquired by the 14 SQM detectors of the Galician Night Sky Brightness Monitoring Network during the period 2015–2018. Overall, the available data suggest that the zenithal readings in the Sky Quality Meter (SQM) device-specific photometric band tended to increase during this period of time at an average rate of +0.09 magSQM/arcsec2 per year.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2552  
Permanent link to this record
 

 
Author Tabaka, P.; Rozga, P. url  doi
openurl 
  Title Influence of a Light Source Installed in a Luminaire of Opal Sphere Type on the Effect of Light Pollution Type Journal Article
  Year 2020 Publication Energies Abbreviated Journal Energies  
  Volume 13 Issue 2 Pages 306  
  Keywords Lighting  
  Abstract The article presents the results of the studies concerning the influence of a light source installed in luminaire of opal sphere type on the light pollution effect of the night sky. It is known from literature reports that the effect of light pollution is influenced by the spectral distribution of light. Although the influence of the spectral distribution has been widely studied from different perspectives, there is still a need to study this phenomenon—for example, from the point of view of the spectral reflection properties of the ground, on which the lanterns are installed. Hence, the above-mentioned aspect was considered in the authors’ investigations. The luminaire considered has been equipped with 20 different light sources, including the latest generation of lamps (light-emitting diodes, LEDs) as well as the conventional ones. With respect to these light sources, the measurements of light distribution and spectral distribution of emitted radiation of the luminaire were performed. Having these measurement data, the simulations were carried out using the DIALux software, and the calculations were made using the specially prepared calculation tool. On the basis of the results obtained in this way this was stated that the type of light source installed in the luminaire has a significant effect on the sky glow. An important factor affecting light pollution is not only the value of the luminous flux emitted upward but also the spectral characteristics of the emitted radiation, the impact of which is most noticeable. The conclusions from the studies indicate the next steps in the analysis of the light pollution effect. These steps will be focused on extended analysis of LEDs as modern and developed light sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2815  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: