|   | 
Details
   web
Records
Author Villamizar, N.; García-Alcazar, A.; Sánchez-Vázquez, F. J.
Title Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchuslabrax) larvae Type Journal Article
Year 2009 Publication Abbreviated Journal
Volume (down) 292 Issue 1-2 Pages 80-86
Keywords animals; fish; light spectrum; photoperiod
Abstract This study investigates how the characteristics (spectrum and photoperiod) of artificial light affect European sea bass eggs and larvae from &#8722; 1 to 40 days post-hatching. Fertilised eggs and larvae were reared under five different light treatments: 12L:12D red light (LDR; half-peak bandwidth = 641–718 nm), 12L:12D blue light (LDB; half-peak bandwidth = 435–500 nm), 12L:12D broad-spectrum white light (LDW; 367 < &#955; < 1057 nm), 24L:0D broad-spectrum white light (LL) and 0L:24D (DD). The results showed that total length at day post-hatching 40 was significantly larger in larvae reared under LDB (15.4 ± 0.6 mm) and LL (15.2 ± 0.6 mm) than in larvae reared under LDR (11.7 ± 0.7 mm). Overall wet weight was highest under LDB (21.6 ± 2.02 mgr) and lowest in LDR larvae (13.6 ± 1.48 mgr). Yolk sac and oil globule absorption occurred more slowly in LDR and DD larvae, while LDB larvae developed their fin, teeth and swim bladder significantly earlier than the rest of the groups. DD larvae were unable to capture food and mortality was 100% by day post-hatching 18, while LDR larvae did not feed on rotifers, but fed on Artemia from day post-hatching 16 onwards. The best survival was obtained with the LL treatment, although significantly more problems with swim bladder development and lower jaw malformations were also identified in this group. In summary, these results highlight the key role of the light spectrum and photoperiod for European sea bass larvae, the best performance being achieved under the light conditions that best approached those of their natural aquatic environment (LDB). These findings should be considered when designing rearing protocols for larvae in aquaculture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1606
Permanent link to this record
 

 
Author Winger, B.M.; Weeks, B.C.; Farnsworth, A.; Jones, A.W.; Hennen, M.; Willard, D.E.
Title Nocturnal flight-calling behaviour predicts vulnerability to artificial light in migratory birds Type Journal Article
Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume (down) 286 Issue 1900 Pages 20190364
Keywords animals
Abstract Understanding interactions between biota and the built environment is increasingly important as human modification of the landscape expands in extent and intensity. For migratory birds, collisions with lighted structures are a major cause of mortality, but the mechanisms behind these collisions are poorly understood. Using 40 years of collision records of passerine birds, we investigated the importance of species' behavioural ecologies in predicting rates of building collisions during nocturnal migration through Chicago, IL and Cleveland, OH, USA. We found that the use of nocturnal flight calls is an important predictor of collision risk in nocturnally migrating passerine birds. Species that produce flight calls during nocturnal migration tended to collide with buildings more than expected given their local abundance, whereas those that do not use such communication collided much less frequently. Our results suggest that a stronger attraction response to artificial light at night in species that produce flight calls may mediate these differences in collision rates. Nocturnal flight calls probably evolved to facilitate collective decision-making during navigation, but this same social behaviour may now exacerbate vulnerability to a widespread anthropogenic disturbance. Our results also suggest that social behaviour during migration may reflect poorly understood differences in navigational mechanisms across lineages of birds.
Address 4 Gantz Family Collections Center, The Field Museum , 1400 South Lake Shore Drive, Chicago, IL 60605 , USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:30940055 Approved no
Call Number GFZ @ kyba @ Serial 2287
Permanent link to this record
 

 
Author Ulgezen, Z.N.; Kapyla, T.; Meerlo, P.; Spoelstra, K.; Visser, M.E.; Dominoni, D.M.
Title The preference and costs of sleeping under light at night in forest and urban great tits Type Journal Article
Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume (down) 286 Issue 1905 Pages 20190872
Keywords Animals
Abstract Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact.
Address 5 Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow , Glasgow , UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:31213184; PMCID:PMC6599990 Approved no
Call Number GFZ @ kyba @ Serial 2557
Permanent link to this record
 

 
Author Kernbach, M.E.; Newhouse, D.J.; Miller, J.M.; Hall, R.J.; Gibbons, J.; Oberstaller, J.; Selechnik, D.; Jiang, R.H.Y.; Unnasch, T.R.; Balakrishnan, C.N.; Martin, L.B.
Title Light pollution increases West Nile virus competence of a ubiquitous passerine reservoir species Type Journal Article
Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume (down) 286 Issue 1907 Pages 20191051
Keywords Animals; Human Health; anthropogenic; ecoimmunology; host competence; light pollution; reservoir host
Abstract Among the many anthropogenic changes that impact humans and wildlife, one of the most pervasive but least understood is light pollution. Although detrimental physiological and behavioural effects resulting from exposure to light at night are widely appreciated, the impacts of light pollution on infectious disease risk have not been studied. Here, we demonstrate that artificial light at night (ALAN) extends the infectious-to-vector period of the house sparrow (Passer domesticus), an urban-dwelling avian reservoir host of West Nile virus (WNV). Sparrows exposed to ALAN maintained transmissible viral titres for 2 days longer than controls but did not experience greater WNV-induced mortality during this window. Transcriptionally, ALAN altered the expression of gene regulatory networks including key hubs (OASL, PLBD1 and TRAP1) and effector genes known to affect WNV dissemination (SOCS). Despite mounting anti-viral immune responses earlier, transcriptomic signatures indicated that ALAN-exposed individuals probably experienced pathogen-induced damage and immunopathology, potentially due to evasion of immune effectors. A simple mathematical modelling exercise indicated that ALAN-induced increases of host infectious-to-vector period could increase WNV outbreak potential by approximately 41%. ALAN probably affects other host and vector traits relevant to transmission, and additional research is needed to advise the management of zoonotic diseases in light-polluted areas.
Address Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:31337318; PMCID:PMC6661335 Approved no
Call Number GFZ @ kyba @ Serial 2611
Permanent link to this record
 

 
Author Bullock, B.; McGlashan, E.M.; Burns, A.C.; Lu, B.S.; Cain, S.W.
Title Traits related to bipolar disorder are associated with an increased post-illumination pupil response Type Journal Article
Year 2019 Publication Psychiatry Research Abbreviated Journal Psychiatry Res
Volume (down) 278 Issue Pages 35-41
Keywords Human Health
Abstract Mood states in bipolar disorder appear to be closely linked to changes in sleep and circadian function. It has been suggested that hypersensitivity of the circadian system to light may be a trait vulnerability for bipolar disorder. Healthy persons with emotional-behavioural traits associated with bipolar disorder also appear to exhibit problems with circadian rhythms, which may be associated with individual differences in light sensitivity. This study investigated the melanopsin-driven post-illumination pupil response (PIPR) in relation to emotional-behavioural traits associated with bipolar disorder (measured with the General Behavior Inventory) in a non-clinical group (n=61). An increased PIPR was associated with increased bipolar disorder-related traits. Specifically, the hypomania scale of the General Behavior Inventory was associated with an increased post-blue PIPR. Further, both the full hypomania and shortened '7 Up' scales were significantly predicted by PIPR, after age, sex and depressive traits were controlled. These findings suggest that increased sensitivity to light may be a risk factor for mood problems in the general population, and support the idea that hypersensitivity to light is a trait vulnerability for, rather than symptom of, bipolar disorder.
Address School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia. Electronic address: sean.cain@monash.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-1781 ISBN Medium
Area Expedition Conference
Notes PMID:31136914 Approved no
Call Number GFZ @ kyba @ Serial 2510
Permanent link to this record