toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Whiting, S.; Pendoley, K.; Ferreira, L.C.; Meekan, M. url  doi
openurl 
  Title High predation of marine turtle hatchlings near a coastal jetty Type Journal Article
  Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume (down) 236 Issue Pages 571-579  
  Keywords Animals; Sea turtles; marine turtles; reptiles; marine reptiles; Flatback turtle; Natator depressus; jetty  
  Abstract Growing human populations are driving the development of coastal infrastructure such as port facilities. Here, we used passive acoustic telemetry to examine the effects of a jetty and artificial light on the rates of predation of flatback turtle (Natator depressus) hatchlings as they disperse through nearshore waters. When released near a jetty, around 70% of the tagged hatchlings were predated before they could transit the nearshore, irrespective of the presence or absence of artificial light. Only 3 to 23% of hatchlings encountered predators at a second study site nearby where there was no jetty and a similar amount of nesting activity. Evidence for predation was provided by rapid tag detachment due to prey handling by a predator or the extensive movement of the tags within the receiver array suggesting that the tag (and hatchling) was inside the stomach of a predator. We found that 70% of the fish predators that consumed tags used the jetty as a refuge during the day and expanded their range along nearshore waters at night, predating on hatchlings in areas adjacent to the jetty with the highest nesting density. Sampling of potential predators including lutjanid reef fishes under the jetty revealed the presence of turtle hatchlings in their gut contents. By providing daytime refuges for predators, nearshore structures such as jetties have the potential to concentrate predators and they may pose a significant threat to populations of vulnerable species. Such effects must be taken into consideration when assessing the environmental impacts associated with these structures.  
  Address Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia; phillipa.wilson(at)research.uwa.edu.au  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2496  
Permanent link to this record
 

 
Author Haddock, J.K.; Threlfall, C.G.; Law, B.; Hochuli, D.F. url  doi
openurl 
  Title Light pollution at the urban forest edge negatively impacts insectivorous bats Type Journal Article
  Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume (down) 236 Issue Pages 17-28  
  Keywords Animals  
  Abstract Connectivity and quality of vegetation in cities, including urban forests, can promote urban biodiversity. However the impact of anthropogenic pressures at the forest-matrix edge, particularly artificial light at night (ALAN), on connectivity has received little attention. We assessed the influence of artificial light at forest edges on insectivorous bats. We acoustically surveyed 31 forest edges across greater Sydney, Australia, half with mercury vapour streetlights and half in ambient darkness, and compared the bat assemblage and activity levels to urban forest interiors. We also sampled the flying insect community to establish whether changes in insect densities under lights drive changes in insectivorous bat activity. We recorded 9965 bat passes from 16 species or species groups throughout our acoustic survey. The activity of all bats, and bats hypothesised to be sensitive to artificial light, was consistently higher in forest interiors as opposed to edges. We found that slower flying bats adapted to cluttered vegetation or with a relatively high characteristic echolocation call frequency; Chalinolobus morio, Miniopterus australis, Vespadelus vulturnus, and Nyctophilus spp., were negatively affected by artificial light sources at the forest edge. The emergence time of Vespadelus vulturnus was also significantly delayed by the presence of streetlights at the forest edge. Conversely, generalist faster flying bats; Chalinolobus gouldii, Ozimops ridei, Austronomous australis, Saccolaimus flaviventris, and Miniopterus orianae oceanensis, were unaffected by artificial light at the edge of urban forest, and used light and dark forest edges in a similar way. Insect surveys showed that larger lepidopterans seemed to be attracted to lit areas, but in low numbers. Artificial light sources on the edges of urban forest have diverse effects on bats and insects, and should be considered an anthropogenic edge effect that can reduce available habitat and decrease connectivity for light-sensitive species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2505  
Permanent link to this record
 

 
Author Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; Zhou, Y. url  doi
openurl 
  Title Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (down) 236 Issue Pages in press  
  Keywords Remote Sensing  
  Abstract Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2756  
Permanent link to this record
 

 
Author Kotarba, A.Z.; Chacewicz, S.; Żmudzka, E. url  doi
openurl 
  Title Night sky photometry over Warsaw (Poland) evaluated simultaneously with surface-based and satellite-based cloud observations Type Journal Article
  Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 235 Issue Pages 95-107  
  Keywords Skyglow  
  Abstract Light pollution is a widely distributed form of anthropogenic pollution that threatens both biodiversity and human health. One of the most popular indicators is known as night sky brightness (NSB), measured with photometric techniques. In the study, we report results of the very first, long-term photometric survey of NSB over Poland's capital, Warsaw, for 636 nights between 2014 and 2016 using a sky quality meter (SQM). Data were collected for all-weather conditions and, for the first time, we simultaneously use two independent sources of cloud amount data: surface-based (SYNOP) and satellite-based (Meteosat/SEVIRI). Results show that Warsaw is significantly polluted by light, with average NSB of 18.65 ± 0.06 magSQM/arcsec2 (15 times higher than unpolluted sky). Zenithal NSB is almost unaffected by moonlight. During astronomical nights, cloud cover was the dominant determinant of NSB, increasing by 7 times for overcast sky. In general, the sky brightened by ∼0.2 magSQM/arcsec2 for each 10% increase in cloud fraction. Satellite-based cloud amount data was found to be a very reliable alternative to traditional SYNOP observations. No statistically significant difference was found for average NSB calculated using satellite and SYNOP datasets. This finding is of particular importance, since the coverage of surface-based data is limited, while satellite observations can be obtained for any location on Earth, and collocate with any NSB photometric station. Our investigation also highlighted that SYNOP data are unreliable when cloud amount is low. This is due to the different fields of view for SQM (20°) and SYNOP (180°) observations of broken cloud.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2580  
Permanent link to this record
 

 
Author Rebke, M.; Dierschke, V.; Weiner, C.N.; Aumüller, R.; Hill, K.; Hill, R. url  doi
openurl 
  Title Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions Type Journal Article
  Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume (down) 233 Issue Pages 220-227  
  Keywords Animals  
  Abstract A growing number of offshore wind farms have led to a tremendous increase in artificial lighting in the marine environment. This study disentangles the connection of light characteristics, which potentially influence the reaction of nocturnally migrating passerines to artificial illumination under different cloud cover conditions. In a spotlight experiment on a North Sea island, birds were exposed to combinations of light colour (red, yellow, green, blue, white), intensity (half, full) and blinking mode (intermittent, continuous) while measuring their number close to the light source with thermal imaging cameras.

We found that no light variant was constantly avoided by nocturnally migrating passerines crossing the sea. The number of birds did neither differ between observation periods with blinking light of different colours nor compared to darkness. While intensity did not influence the number attracted, birds were drawn more towards continuous than towards blinking illumination, when stars were not visible. Red continuous light was the only exception that did not differ from the blinking counterpart. Continuous green, blue and white light attracted significantly more birds than continuous red light in overcast situations.

Our results suggest that light sources offshore should be restricted to a minimum, but if lighting is needed, blinking light is to be preferred over continuous light, and if continuous light is required, red light should be applied.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2255  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: