toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blagonravov, M.L.; Bryk, A.A.; Medvedeva, E.V.; Goryachev, V.A.; Chibisov, S.M.; Kurlaeva, A.O.; Agafonov, E.D. url  doi
openurl 
  Title Structure of Rhythms of Blood Pressure, Heart Rate, Excretion of Electrolytes, and Secretion of Melatonin in Normotensive and Spontaneously Hypertensive Rats Maintained under Conditions of Prolonged Daylight Duration Type Journal Article
  Year 2019 Publication Bulletin of Experimental Biology and Medicine Abbreviated Journal Bull Exp Biol Med  
  Volume (down) 168 Issue 1 Pages 18-23  
  Keywords Animals; arterial hypertension; biological rhythms; excessive exposure to light; melatonin  
  Abstract We studied the structure of rhythms of BP, HR (by telemetric monitoring), electrolyte excretion (by capillary electrophoresis), and products of epiphyseal melatonin (by the urinary concentration of 6-sulfatoxymelatonin measured by ELISA) in normotensive Wistar-Kyoto rats and spontaneously hypertensive SHR rats maintained at 16/8 h and 20/4 h light-dark regimes. In Wister-Kyoto rats exposed to prolonged daylight, we observed changes in the amplitude, rhythm power (% of rhythm), and range of oscillations of systolic BP; HR mezor decreased. In SHR rats, mezor of HR also decreased, but other parameters of rhythms remained unchanged. Changes in electrolyte excretion were opposite in normo- and hypertensive rats. Under conditions of 20/4 h light-dark regime, daytime melatonin production tended to increase in normotensive rats and significantly increased in SHR rats. At the same time, nighttime melatonin production did not change in both normotensive and hypertensive animals. As the secretion of melatonin has similar features in animals of both lines, we can say that the epiphyseal component of the “biological clock” is not the only component of the functional system that determines the response of the studied rhythms to an increase in the duration of light exposure.  
  Address V. A. Frolov Department of General Pathology and Pathophysiology, Institute for Medicine, Peoples' Friendship University of Russia, Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-4888 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31741240 Approved no  
  Call Number GFZ @ kyba @ Serial 2755  
Permanent link to this record
 

 
Author Desouhant, E.; Gomes, E.; Mondy, N.; Amat, I. url  doi
openurl 
  Title Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective Type Journal Article
  Year 2019 Publication Entomologia Experimentalis et Applicata Abbreviated Journal Entomol Exp Appl  
  Volume (down) 167 Issue 1 Pages 37-58  
  Keywords Animals  
  Abstract The alternation of light and dark periods on a daily or seasonal time scale is of utmost importance for the synchronization of physiological and behavioral processes in the environment. For the last 2 decades, artificial light at night (ALAN) has strongly increased worldwide, disrupting the photoperiod and its related physiological processes, and impacting the survival and reproduction of wild animals. ALAN is now considered as a major concern for biodiversity and human health. Here, we present why insects are relevant biological models to investigate the impact of ALAN. First the phenotypic responses to ALAN and their underpinning mechanisms are reviewed. The consequences for population dynamics, and the community composition and functioning are described in the second part. Because ALAN provides new and widespread selective pressure, we inventory evolutionary changes in response to this anthropogenic change. Finally, we identify promising future avenues, focusing on the necessity of understanding evolutionary processes that could help stakeholders consider darkness as a resource to preserve biodiversity as well as numerous ecosystem services in which insects are involved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-8703 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2195  
Permanent link to this record
 

 
Author Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C. url  doi
openurl 
  Title Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes Type Journal Article
  Year 2018 Publication Physiologia Plantarum Abbreviated Journal Physiol Plant  
  Volume (down) 164 Issue 2 Pages 226-240  
  Keywords Plants  
  Abstract Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn ), maximal photochemical efficiency (Fv /Fm ), electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.  
  Address School of Animal, Rural and Environmental Science, Brackenhurst Campus, Nottingham Trent University, NG25 0QF, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9317 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29493775 Approved no  
  Call Number GFZ @ kyba @ Serial 1905  
Permanent link to this record
 

 
Author Guk, E.; Levin, N. url  doi
openurl 
  Title Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image – Jerusalem as a case study Type Journal Article
  Year 2020 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume (down) 163 Issue Pages 121-136  
  Keywords Remote Sensing  
  Abstract In recent decades, there has been an increase in artificial lighting in the world due to urbanization and the revolution of LED lighting. Artificial lighting is an indicator of human activity, but can adversely affect natural ecosystems and people due to negative impacts of light pollution. Space-borne and airborne imagery as well as ground-based measurements enable to measure the intensity and spectra of artificial lights. One of the challenges in remote sensing of night-time lights is how to ground truth night-time imagery acquired by satellites, and how much do space-borne measurements represent the brightness as perceived by organisms. Most of the studies on night-time lights to-date were done using panchromatic sensors at large spatial extents, which did not allow to examine intra-urban variation in night light intensity and spectra. The aim of this study was to test the capability of the new Chinese satellite Jilin-1, which is the first commercial satellite to offer multispectral night-light imagery at a spatial resolution below 1 m, to characterize the night-time properties of urban areas. We examined the correspondence between light intensities as measured from different sensors at different spatial resolutions: two Jilin-1 images of the Jerusalem metropolitan area (0.89 m), VIIRS/DNB (500 m), Loujia-1 (130 m), unmanned aerial vehicle (UAV) color image (0.05 m) and hemispherical color photographs taken by a calibrated ground DSLR (digital single-lens reflex camera). In all the comparisons between different remote sensing tools, as the spatial resolution coarsened, the Pearson correlation coefficient increased, reaching > 0.5 (after resampling to 100 m). Stronger correlations were found for the red band, and weaker correlations were found for the blue band, probably due to atmospheric scattering. By identifying specific objects such as buildings and lightings, we found good correspondence () between Jilin-1 and the ground-based measurements of night-time brightness. We further examined the variability of night lights within different land use types and within different ethnic/religion composition of statistical areas. We found that residential areas of Orthodox Jews were characterized with the highest brightness at night compared with residential areas of Arabs in the West Bank that had the lowest brightness. At the statistical zone level (n = 299), more than 50% of the variability in night-time brightness, was explained by land cover properties (NDVI), infrastructure (roads and built volume) and the ethnic/religious composition. In addition, we found that the spectral ratio index which was based on the red and green bands, enabled to better distinguish between land use classes, than the spectral ratio index which was based on the green and blue bands. The availability of night-time multi-spectral imagery at fine spatial resolution now enables to study urban land-use and spatial inequality, and to better understand the factors explaining night-time brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2857  
Permanent link to this record
 

 
Author Sierro, A., & Erhardt, A. doi  openurl
  Title Light pollution hampers recolonization of revitalised European Nightjar habitats in the Valais (Swiss Alps) Type Journal Article
  Year 2019 Publication Journal of Ornithology Abbreviated Journal  
  Volume (down) 160 Issue 3 Pages 749–761  
  Keywords Animals; Conservation; Birds; Caprimulgus europaeus; Conservation measures; Moth availability; Nocturnal adaptation  
  Abstract Increasing light emissions caused by human activities have been recognized as a major threat for nocturnal animals. In Switzerland, the European Nightjar is a rare bird, decreasing in numbers since the 1970s, and is therefore highly threatened. The last breeding population occurs in the canton Valais. Initial expert-based conservation measures on formerly inhabited breeding sites were successful until 2000, however recent additional measures have failed. Nightjars are highly sensitive to light due to their special retina adapted to living in semi-darkness. We hypothesized that food availability, mainly moths, is not a critical limiting factor, but that artificial light emissions prevent successful foraging as well as recolonizing revitalised breeding habitats of the nightjar. To test this hypothesis, we used light trapping data of moths from the last 30 years to evaluate food availability and compared light emission on abandoned versus still-occupied breeding sites. Abundance of larger moths did not change significantly over the last 30 years, and smaller moths even increased in abandoned as well as in still-occupied nightjar habitats. However, light emission was two to five times higher in abandoned compared to still-occupied sites. These results suggest that increasing light emission during recent decades has exceeded tolerable levels for this highly specialized night bird. Authorities of the canton Valais should therefore order a reduction in light emission near nightjar habitats by replacing bulbs currently in use with customized LED or broad-spectrum lamps low in white and blue light, and assign remaining nightjar habitats as areas of complete nocturnal darkness, thereby also protecting other threatened nocturnal animals, including moths.  
  Address Conservation Nature and Paysage, Sierre, Switzerland; antoine(at)naturarks.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2300  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: