toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xie, Y.; Weng, Q.; Fu, P. url  doi
openurl 
  Title Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017 Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (down) 225 Issue Pages 160-174  
  Keywords Remote Sensing  
  Abstract Artificial nighttime lights (NTL) generated by human activities offer a unique opportunity to understand urban environments. Although previous studies have widely used NTL images to map urban extent at multiple scales, it remains a challenging task to address how NTL respond exactly to urbanization and thus to map urbanization from NTL. In this study, using monthly Suomi National Polar-orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) NTL images between 2013 and 2017, we developed a method to decompose time-series NTL signal into annual and seasonal components. Further, we proposed an NTL-based indicator for the detection of impervious surfaces change (ISC) by integrating annual increment and seasonal variation of NTL brightness. The indicator was then used to identify ISC by using a thresholding method. The application of the methodology in the conterminous United States (CONUS) revealed a more rapid urbanization in the southern CONUS than the northern states and a northeastern-southwestern gradient of NTL seasonality. It was also found that NTL of November and December provided the most accurate characterization of urban extent for most areas in the CONUS. The detection of ISC in four representative regions (i.e. Dallas-Fort Worth-Arlington, greater Washington D.C., Denver-Aurora, and Atlanta) resulted in a moderate to high accuracy with the overall accuracy of ~80% and the Kappa value ranging from 0.56 to 0.73. Despite of this, the results showed a low accuracy of NTL-derived changing year of ISC (Kappa: 0.28) because of the existence of temporal inconsistency between NTL increase and ISC. The proposed method has the potential to timely map urban expansion at large geographical scales (e.g., continental and global) in a cost-efficient manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2336  
Permanent link to this record
 

 
Author Sánchez de Miguel, A.; Kyba, C.C.M.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. url  doi
openurl 
  Title Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (down) 224 Issue Pages 92-103  
  Keywords Remote Sensing; Instrumentation  
  Abstract Sensors on remote sensing satellites have provided useful tools for evaluation of the environmental impacts of nighttime artificial light pollution. However, due to their panchromatic nature, the data available from these sensors (VIIRS/DNB and DMSP/OLS) has a limited capacity accurately to assess this impact. Moreover, in some cases, recorded variations can be misleading. Until new satellite platforms and sensors are available, only nighttime images taken with DSLR cameras from the International Space Station (ISS), airplanes, balloons or other such platforms can provide the required information. Here we describe a theoretical approach using colour-colour diagrams to analyse images taken by astronauts on the ISS to estimate spatial and temporal variation in the spectrum of artificial lighting emissions. We then evaluate how this information can be used to determine effects on some key environmental indices: photopic vision, the Melatonin Suppression Index, the Star Light Index, the Induced Photosynthesis Index, production of NO2-NO radicals, energy efficiency and CO2 emissions, and Correlated Colour Temperature. Finally, we use the city of Milan as a worked example of the approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2189  
Permanent link to this record
 

 
Author Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J. url  doi
openurl 
  Title A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume (down) 224 Issue Pages 401-411  
  Keywords Remote Sensing  
  Abstract Night-time light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operation Linescan System (OLS) provide important observations of human activities; however, DMSP-OLS NTL data suffer from problems such as saturation and blooming. This research developed a self-adjusting model (SEAM) to correct blooming effects in DMSP-OLS NTL data based on a spatial response function and without using any ancillary data. By assuming that the pixels adjacent to the background contain no lights (i.e., pseudo light pixels, PLPs), the blooming effect intensity, a parameter in the SEAM model, can be estimated by pixel-based regression using PLPs and their neighboring light sources. SEAM was applied to all of China, and its performance was assessed for twelve cities with different population sizes. The results show that SEAM can largely reduce the blooming effect in the original DMSP-OLS dataset and enhance its quality. The images after blooming effect correction have higher spatial similarity with Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) images and higher spatial variability than the original DMSP-OLS data. We also found that the average effective blooming distance is approximately 3.5 km in China, which may be amplified if the city is surrounded by water surfaces, and that the blooming effect intensity is positively correlated to atmospheric quality. The effectiveness of the proposed model will improve the capacity of DMSP-OLS images for mapping the urban extent and modeling socioeconomic parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2239  
Permanent link to this record
 

 
Author Foster, J.J.; Kirwan, J.D.; El Jundi, B.; Smolka, J.; Khaldy, L.; Baird, E.; Byrne, M.J.; Nilsson, D.-E.; Johnsen, S.; Dacke, M. url  doi
openurl 
  Title Orienting to polarized light at night – matching lunar skylight to performance in a nocturnal beetle Type Journal Article
  Year 2019 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume (down) 222 Issue Pt 2 Pages  
  Keywords Animals; Natural skylight  
  Abstract For polarized light to inform behaviour, the typical range of degrees of polarization observable in the animal's natural environment must be above the threshold for detection and interpretation. Here, we present the first investigation of the degree of linear polarization threshold for orientation behaviour in a nocturnal species, with specific reference to the range of degrees of polarization measured in the night sky. An effect of lunar phase on the degree of polarization of skylight was found, with smaller illuminated fractions of the moon's surface corresponding to lower degrees of polarization in the night sky. We found that the South African dung beetle Escarabaeus satyrus can orient to polarized light for a range of degrees of polarization similar to that observed in diurnal insects, reaching a lower threshold between 0.04 and 0.32, possibly as low as 0.11. For degrees of polarization lower than 0.23, as measured on a crescent moon night, orientation performance was considerably weaker than that observed for completely linearly polarized stimuli, but was nonetheless stronger than in the absence of polarized light.  
  Address Lund Vision Group, Department of Biology, Lund University, Solvegatan 35, 223 62 Lund, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30530838 Approved no  
  Call Number GFZ @ kyba @ Serial 2599  
Permanent link to this record
 

 
Author Netzel, H.; Netzel, P. url  doi
openurl 
  Title High-resolution map of light pollution Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 221 Issue Pages 300-308  
  Keywords Skyglow  
  Abstract In 1976 Berry created a very simple model describing artificial night sky brightness due to light emitted by cities. He used several assumptions and simplifications, due to which, map calculated with this model does not properly describes the night sky brightness. Especially, this is the case for highly urbanized areas. We used Berry’s idea, but we changed some assumptions and used very different input data. As in Berry’s approach, we focused on total sky brightness and did not analyze spectral properties of artificial light emission. Resultant map has a resolution of 100 meters, and so far it is the most detailed map of night sky brightness. Moreover we included the shadowing effect, which is very important on mountainous areas. Map is calculated for Poland and for several other places in Europe. We also describe the comparison between calculated values and measurements for different areas in Europe. Also we present comparison between our approach and the new world atlas of artificial night sky brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1937  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: