|   | 
Details
   web
Records
Author Deng, K.; Zhu, B.-C.; Zhou, Y.; Chen, Q.-H.; Wang, T.-L.; Wang, J.-C.; Cui, J.-G.
Title Mate choice decisions of female serrate-legged small treefrogs are affected by ambient light under natural, but not enhanced artificial nocturnal light conditions Type Journal Article
Year 2019 Publication Behavioural Processes Abbreviated Journal Behavioural Processes
Volume (up) in press Issue Pages 103997
Keywords Animals; frogs; amphibians; serrate-legged small treefrogs; Kurixalus odontotarsus
Abstract Artificial light at night (ALAN) is a widespread anthropogenic stimulus that can significantly alter nocturnal animals’ behavior, from migration to foraging to vocal communication. In the present study, we tested the hypothesis that the mate choice decisions of female serrate-legged small treefrogs (Kurixalus odontotarsus) were influenced by ambient light intensity. Standard two-speaker phonotaxis tests were conducted in a sound attenuating chamber. We set four light conditions (I-IV, from low to high) based on a range of light intensities from the maximum natural light at night (i.e., full moon) to that of the actual calling sites, which had artificial light. Contrary to our prediction, female frogs showed a preference for calls on the bright side in treatment I when they were exposed to identical stimuli. However, females preferred longer calls on the dim side to shorter calls on the bright side in this treatment. In addition, there were no significant effects of choice side, light treatment or their interaction on leave time or choice time. Our results suggest that females are more attracted to mates in bright light under natural nocturnal light conditions, but the preference for longer calls is not altered in serrate-legged small treefrogs.
Address Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0376-6357 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2730
Permanent link to this record
 

 
Author Mendes, C.P.; Carreira, D.; Pedrosa, F.; Beca, G.; Lautenschlager, L.; Akkawi, P.; Bercê, W.; Ferraz, K.M.P.M.B.; Galetti, M.
Title Landscape of human fear in Neotropical rainforest mammals Type Journal Article
Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume (up) in press Issue Pages 108257
Keywords Animals; Remote Sensing; rainforest; Ecology
Abstract The landscape of fear has profound effects on the species behavior, with most organisms engaging in risk avoidance behaviors in areas perceived as riskier. Most risk avoidance behaviors, such as temporal avoidance, have severe trade-offs between foraging efficiency and risk reduction. Human activities are able to affect the species landscape of fear, by increasing mortality of individuals (i.e. hunting, roadkill) and by disruption of the clues used by the species to estimate predation risk (e.g. light pollution). In this study, we used an extensive camera-trapping and night-time light satellite imagery to evaluate whether human activities affect the diel activity patterns of 17 species of rainforest dwelling mammals. We found evidence of diel activity shifts in eight of 17 analyzed species, in which five species become 21.6 % more nocturnal and three species become 11.7% more diurnal in high disturbed areas. This activity shifts were observed for both diurnal and nocturnal species. Persecuted species (game and predators) were more susceptible to present activity shifts. Since changes in foraging activity may affect species fitness, the behavior of humans’ avoidance may be another driver of the Anthropocene defaunation.
Address Laboratório de Biologia da Conservação – LABIC, Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, Avenida 24A, 1515, 13506-900, Rio Claro, São Paulo, Brazil; calebepm3(at)hotmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2743
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L.
Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
Year 2019 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume (up) in press Issue Pages 1365-2435.13485
Keywords Ecology; Bacteria; Ecosystems
Abstract Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbors, ports and marinas).

2.By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3.Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4.Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5.ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi(at)unipi.it
Corporate Author Thesis
Publisher British Ecological Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2746
Permanent link to this record
 

 
Author Nguyen, C.N.; Noy, I.
Title Measuring the impact of insurance on urban earthquake recovery using nightlights Type Journal Article
Year 2019 Publication Journal of Economic Geography Abbreviated Journal
Volume (up) in press Issue Pages lbz033
Keywords Remote Sensing; Earthquakes; New Zealand; Night lights
Abstract We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity, and focus on the role of insurance payments for damaged residential property in the recovery process. The destructive Canterbury Earthquake Sequence (2010–2011) in New Zealand is our case study. Uniquely, for this event, >95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact on recovery. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Cash settlement of claims was no more effective than insurance-managed repairs in generating local recovery. Notably, delayed payments were less affective in assisting recovery; this suggests an important role for the regulator in making sure insurance payments are made promptly after disaster events.
Address School of Economics and Finance, Victoria University of Wellington, Kelburn, Wellington, New Zealand; ilan.noy(at)vuw.ac.nz
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1468-2702 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2750
Permanent link to this record
 

 
Author Secondi, J.; Davranche, A.; Théry, M.; Mondy, N.; Lengagne, T.; Isaac, N.
Title Assessing the effects of artificial light at night on biodiversity across latitude – Current knowledge gaps Type Journal Article
Year 2019 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr
Volume (up) in press Issue Pages geb.13037
Keywords Ecology; biodiversity; Review
Abstract Aim

Exposure to artificial light at night (ALAN) is a risk factor for organisms. Considering the spread and increasing intensity of night brightness across the globe, and the key role of light at all biological levels, alterations of ecosystems are expected. Yet, we cannot predict the severity of the effects of ALAN in several biomes because little information is available outside the temperate zone. We reviewed current knowledge and identified traits that could be targeted to fill this knowledge gap in order to contribute to the elaboration of a biogeographical framework for the study of ALAN at the global scale.

Location

Global.

Time period

Current and next decades.

Methods

We analysed the latitudinal variation in ALAN and focused on environmental factors that vary with latitude but that have been overlooked. We reviewed biological traits that exhibit latitudinal variation and depend on light and photoperiod and compiled information about the predicted changes in human demography and road networks across different world regions.

Results

Cloud cover amplifies ALAN far away from urbanized areas. Because of the higher frequency of overcast sky nights, exposure effects may be stronger both at high latitudes and across a large fraction of the intertropical zone, although at different times of the year. Intertropical biomes host the largest fraction of global biodiversity. Although currently they are not the most exposed to ALAN, their human populations are growing, and urbanized areas and road networks are expanding. Hence, ALAN could have strong ecological consequences, with cloud cover as an aggravating factor.

Perspectives

Knowledge gaps currently limit our ability to predict the effects of ALAN in different biomes. Therefore, it will be important to start investigating the consequences of this novel environmental factor across the globe, in order to develop a relevant theoretical framework.
Address
Corporate Author Wiley Thesis
Publisher English Place of Publication English Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2758
Permanent link to this record