|   | 
Details
   web
Records
Author Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R.
Title The influence of artificial night at night and polarized light on bird-building collisions Type Journal Article
Year (down) 2020 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 241 Issue Pages 108358
Keywords Animals
Abstract Collisions with buildings annually kill up to 1 billion birds in the United States. Bird-building collisions primarily occur at glass surfaces: birds often fail to perceive glass as a barrier and appear to be attracted to artificial light emitted from windows. However, some aspects of avian vision are poorly understood, including how bird responses to different types of light influence building collisions. Some evidence suggests birds can detect polarized light, which may serve as a cue to assist with migration orientation and/or detect water bodies. Dark, reflective surfaces, including glass, reflect high degrees of polarized light, causing polarized light pollution (PLP). However, no studies have analyzed the relationship between bird collisions and PLP reflected from buildings. Additionally, while artificial light at night (ALAN) is frequently implicated as a major factor influencing bird-building collisions, few studies have analyzed this relationship. We investigated both types of light pollution—PLP and ALAN—and their association with bird collisions at 48 façades of 13 buildings in Minneapolis, Minnesota, USA. We found that the area of glass emitting ALAN was the most important factor influencing collisions, and that this effect of ALAN was independent of overall glass area; this result provides strong support for turning off lights at night to reduce bird-building collisions. Although we found no relationship between PLP and collisions, additional research is needed to better understand bird responses to polarized light. Fully understanding how different aspects of light influence bird-building collisions can inform conservation efforts to reduce this major threat to birds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2757
Permanent link to this record
 

 
Author Hu, X.; Qian, Y.; Pickett, S.T.A.; Zhou, W.
Title Urban mapping needs up-to-date approaches to provide diverse perspectives of current urbanization: A novel attempt to map urban areas with nighttime light data Type Journal Article
Year (down) 2020 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 195 Issue Pages in press
Keywords Remote Sensing
Abstract Quantifying the spatial and temporal changes of urban extent is important for understanding the burgeoning process of urbanization. Numerous well-performing methods have been used to map urban areas and detect urban changes using nighttime light data, but many of these methods assume that the urban area is equivalent to regions with high percentages of impervious surfaces or developed land. We present an approach to efficiently map urban areas at the regional scale, which also provides opportunities to recognize urban extents from different theoretical perspectives. In our approach, appropriate demarcating criteria and urban indicators were chosen based on understanding the current state of urbanization of the study area. After object-based segmentation and detection of initial urban centers, urban patches are discerned by expanding from these initial urban centers through a grouping algorithm, delineating the relative fringes of the urban area. We tested this new approach for mainland China, using 2010 Defense Meteorological Satellite Program/Operational Linescan System nighttime light data and county-level administrative units. We found a total urban area of 146,806  spread across 2489 counties and amounting to 1.5% of the land in mainland China. The delineated boundary of the urban patches had different values by compass direction. Mean values of fringes and sizes of different urban patches varied greatly across regions. We detected all provincial capitals, 97.3% of the prefecture-level cities and 91.0% of the county-level cities. This approach is thus capable of identifying urban patches with reliable accuracy at the regional scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2763
Permanent link to this record
 

 
Author Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; Wang, Z.; Shrestha, R.M.; Elvidge, C.D.
Title Remote sensing of night lights: A review and an outlook for the future Type Journal Article
Year (down) 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 237 Issue Pages In press
Keywords Remote Sensing
Abstract Remote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development. The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2771
Permanent link to this record
 

 
Author Kosicki, J.Z.
Title Anthropogenic activity expressed as ‘artificial light at night’ improves predictive density distribution in bird populations Type Journal Article
Year (down) 2020 Publication Ecological Complexity Abbreviated Journal Ecological Complexity
Volume 41 Issue Pages 100809
Keywords Remote Sensing; Animals; Ecology
Abstract Artificial Light At Night (ALAN) is one of the most important anthropogenic environmental components that affects biodiversity worldwide. Despite extensive knowledge on ALAN, being a measure of human activity that directly impacts numerous aspects of animal behaviour, such as orientation and distribution, little is known about its effects on density distribution on a large spatial scale. That is why we decided to explore by means of the Species Distribution Modelling approach (SDM) how ALAN as one of 33 predictors determines farmland and forest bird species densities. In order to safeguard study results from any inconsistency caused by the chosen method, we used two approaches, i.e. the Generalised Additive Model (GAM) and the Random Forest (RF). Within each approach, we developed two models for two bird species, the Black woodpecker and the European stonechat: the first with ALAN, and the second without ALAN as an additional predictor. Having used out-of-bag procedures in the RF approach, information-theoretic criteria for the GAM, and evaluation models based on an independent dataset, we demonstrated that models with ALAN had higher predictive density power than models without it. The Black woodpecker definitely and linearly avoids anthropogenic activity, defined by the level of artificial light, while the European stonechat tolerates human activity to some degree, especially in farmland habitats. What is more, a heuristic analysis of predictive maps based on models without ALAN shows that both species reach high densities in regions where they are deemed rare. Hence, the study proves that urbanisation processes, which can be reflected by ALAN, are among key predictors necessary for developing Species Density Distribution Models for both farmland and forest bird species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476945X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2776
Permanent link to this record
 

 
Author Kyba, C.C.M.; Giuliani, G.; Franziskakis, F.; Tockner, K.; Lacroix, P.
Title Artisanal and Small-Scale Mining Sites in the Democratic Republic of the Congo Are Not Associated with Nighttime Light Emissions Type Journal Article
Year (down) 2019 Publication J Abbreviated Journal J
Volume 2 Issue 2 Pages 152-161
Keywords Remote Sensing
Abstract Maintaining records of artisanal and small-scale mining sites in developing countries requires considerable effort, so it would be beneficial if Earth observation data from space could assist in the identifying and monitoring of such sites. Artificial light emissions are common at industrial-scale mining sites and have been associated with small-scale illegal mining in some contexts. Here, we examine whether known artisanal and small-scale mining sites in the Democratic Republic of the Congo (DRC) are associated with observations of night light emissions by the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB). Light emissions from the mining sites were not observed: the radiance observed from the sites was near zero and nearly identical to that observed for a set of randomly-chosen locations in the same region. While it is the case that DNB night lights’ products provide useful data in other resource extraction contexts, they do not appear to be useful for identifying artisanal mining sites in the DRC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2571-8800 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2295
Permanent link to this record