toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cox, D.T.C.; Sánchez de Miguel, A.; Dzurjak, S.A.; Bennie, J.; Gaston, K.J. url  doi
openurl 
  Title National Scale Spatial Variation in Artificial Light at Night Type Journal Article
  Year (down) 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 10 Pages 1591  
  Keywords Skyglow; Remote Sensing  
  Abstract The disruption to natural light regimes caused by outdoor artificial nighttime lighting has significant impacts on human health and the natural world. Artificial light at night takes two forms, light emissions and skyglow (caused by the scattering of light by water, dust and gas molecules in the atmosphere). Key to determining where the biological impacts from each form are likely to be experienced is understanding their spatial occurrence, and how this varies with other landscape factors. To examine this, we used data from the Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band and the World Atlas of Artificial Night Sky Brightness, to determine covariation in (a) light emissions, and (b) skyglow, with human population density, landcover, protected areas and roads in Britain. We demonstrate that, although artificial light at night increases with human density, the amount of light per person decreases with increasing urbanization (with per capita median direct emissions three times greater in rural than urban populations, and per capita median skyglow eleven times greater). There was significant variation in artificial light at night within different landcover types, emphasizing that light pollution is not a solely urban issue. Further, half of English National Parks have higher levels of skyglow than light emissions, indicating their failure to buffer biodiversity from pressures that artificial lighting poses. The higher per capita emissions in rural than urban areas provide different challenges and opportunities for mitigating the negative human health and environmental impacts of light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2926  
Permanent link to this record
 

 
Author Yao, J.Q.; Zhai, H.R.; Tang, X.M.; Gao, X.M.; Yang, X.D. url  doi
openurl 
  Title Amazon Fire Monitoring and Analysis Based on Multi-source Remote Sensing Data Type Journal Article
  Year (down) 2020 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume 474 Issue Pages 042025  
  Keywords Remote Sensing  
  Abstract In August 2019, a large-scale fire broke out in the Amazon rainforest, bringing serious harm to the ecosystem and human beings. In order to accurately monitor the dynamic change of forest fire in Amazon rainforest and analyse the impact of fire spreading and extinction on the environment, firstly, based on NPP VIIRS data covering the Amazon fire area, the sliding window threshold method is adopted to extract the fire point, and the cause of fire change is monitored and analysed according to the time series. Secondly, based on the time series of CALIPSO data, the vertical distribution changes of atmospheric pollutants in the amazon fire area are analysed, and the comprehensive analysis is carried out by combining NPP VIIRS data. The experimental results show that only NPP VIIRS data is used to predict the fire, and the combination of CALIPSO data can better monitor the forest fire and predict the fire development trend. The combination of optical image and laser radar has greater advantages in dynamic fire monitoring and fire impact analysis. The method described in this paper can provide basic data reference for real-time and accurate prediction of forest fires and provide new ideas for dynamic fire monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1315 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2927  
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F. url  doi
openurl 
  Title Toward an atlas of the number of visible stars Type Journal Article
  Year (down) 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 107059  
  Keywords Skyglow  
  Abstract Modelling techniques for the propagation of light pollution in the atmosphere allow the computation of maps of artificial night sky brightness in any direction of the sky, involving a large number of details from satellite data. Cinzano et al. (2001a) introduced a method of mapping naked eye star visibility at the zenith from large areas based on satellite radiance measurements and Garstang models of the propagation of light pollution. It takes into account the altitude of each land area from digital elevation data, natural sky brightness in the chosen sky direction based on the Garstang approach, eye capability after Garstang and Schaefer, and atmospheric extinction in the visual photometric band. Here we discuss how to use these methods to obtain maps of the average number of visible stars when looking at the night sky hemisphere, finally answering, site by site, the question of how many stars are visible in the sky. This is not trivial, as the number of stars visible depends on the limiting magnitude in each direction in the sky, and this depends on sky brightness in that direction, atmospheric extinction at that zenith distance and the observer's visual acuity and experience. We present, as an example, a map of the number of visible stars in Italy to an average observer on clear nights with a resolution of approximately 1 km.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2928  
Permanent link to this record
 

 
Author Chen, J.; Zhao, F.; Zeng, N.; Oda, T. url  doi
openurl 
  Title Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities Type Journal Article
  Year (down) 2020 Publication Carbon Balance and Management Abbreviated Journal Carbon Balance Manag  
  Volume 15 Issue 1 Pages 9  
  Keywords Remote Sensing; City CO2 emissions; Emission inventory; Fossil fuel CO2 emissions; In-boundary; Odiac  
  Abstract BACKGROUND: Compilation of emission inventories (EIs) for cities is a whole new challenge to assess the subnational climate mitigation effort under the Paris Climate Agreement. Some cities have started compiling EIs, often following a global community protocol. However, EIs are often difficult to systematically examine because of the ways they were compiled (data collection and emission calculation) and reported (sector definition and direct vs consumption). In addition, such EI estimates are not readily applicable to objective evaluation using modeling and observations due to the lack of spatial emission extents. City emission estimates used in the science community are often based on downscaled gridded EIs, while the accuracy of the downscaled emissions at city level is not fully assessed. RESULTS: This study attempts to assess the utility of the downscaled emissions at city level. We collected EIs from 14 major global cities and compare them to the estimates from a global high-resolution fossil fuel CO2 emission data product (ODIAC) commonly used in the science research community. We made necessary adjustments to the estimates to make our comparison as reasonable as possible. We found that the two methods produce very close area-wide emission estimates for Shanghai and Delhi (< 10% difference), and reach good consistency in half of the cities examined (< 30% difference). The ODIAC dataset exhibits a much higher emission compared to inventory estimates in Cape Town (+ 148%), Sao Paulo (+ 43%) and Beijing (+ 40%), possibly related to poor correlation between nightlight intensity with human activity, such as the high-emission and low-lighting industrial parks in developing countries. On the other hand, ODIAC shows lower estimates in Manhattan (- 62%), New York City (- 45%), Washington D.C. (- 42%) and Toronto (- 33%), all located in North America, which may be attributable to an underestimation of residential emissions from heating in ODIAC's nightlight-based approach, and an overestimation of emission from ground transportation in registered vehicles statistics of inventory estimates. CONCLUSIONS: The relatively good agreement suggests that the ODIAC data product could potentially be used as a first source for prior estimate of city-level CO2 emission, which is valuable for atmosphere CO2 inversion modeling and comparing with satellite CO2 observations. Our compilation of in-boundary emission estimates for 14 cities contributes towards establishing an accurate inventory in-boundary global city carbon emission dataset, necessary for accountable local climate mitigation policies in the future.  
  Address Goddard Earth Sciences Research and Technology, Universities Space Research Association, Columbia, MD, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1750-0680 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32430547 Approved no  
  Call Number GFZ @ kyba @ Serial 2929  
Permanent link to this record
 

 
Author Lu, W.; Liu, Y.; Wang, J.; Xu, W.; Wu, W.; Liu, Y.; Zhao, B.; Li, H.; Li, P. url  doi
openurl 
  Title Global proliferation of offshore gas flaring areas Type Journal Article
  Year (down) 2020 Publication Journal of Maps Abbreviated Journal Journal of Maps  
  Volume 16 Issue 2 Pages 396-404  
  Keywords Remote Sensing  
  Abstract The long-term venting and combustion of offshore associated gas have substantial adverse effects on the ecological environment, so characterizing the global proliferation of offshore gas flaring areas is very important for marine environmental protection and climate change research. However, the use of a single fire/light remote sensing product makes it difficult to conduct long-term observations. In this study, we detected global offshore gas flaring areas during the 27-year interval from 1992 to 2018, using temporal and spatial complementarity of six different remote sensing data products, which are as follows: DMSP-OLS Nighttime Lights; (A)ATSRs; MODIS and VIIRS activefire products; and VIIRS Night Fire and NighttimeLight. Our aim was to achieve more comprehensive extraction results and to analyze a longer time-interval than has been attempted previously. In addition, the resulting map ofthe global proliferation of offshore gas flaring areas enables their locational and temporal characteristics to be visualized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-5647 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: