toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux Jr., S.A.; Avery, M.L.; Crawford, R.L.; Manville II, A.M.; Travis, E.R.; Drake, D. url  doi
openurl 
  Title Avian mortality at communication towers in the United States and Canada: which species, how many, and where? Type Journal Article
  Year 2013 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 158 Issue Pages 410-419  
  Keywords  
  Abstract Birds migrating to and from breeding grounds in the United States and Canada are killed by the millions in collisions with lighted towers and their guy wires. Avian mortality at towers is highly variable across species, and the importance to each population depends on its size and trajectory. Building on our previous estimate of avian mortality at communication towers, we calculated mortality by species and by regions. To do this, we constructed a database of mortality by species at towers from available records and calculated the mean proportion of each species killed at towers within aggregated Bird Conservation Regions. These proportions were combined with mortality estimates that we previously calculated for those regions. We then compared our estimated bird mortality rates to the estimated populations of these species in the United States and Canada. Neotropical migrants suffer the greatest mortality; 97.4% of birds killed are passerines, mostly warblers (Parulidae, 58.4%), vireos (Vireonidae, 13.4%), thrushes (Turdidae, 7.7%), and sparrows (Emberizidae, 5.8%). Thirteen birds of conservation concern in the United States or Canada suffer annual mortality of 1–9% of their estimated total population. Of these, estimated annual mortality is >2% for Yellow Rail (Coturnicops noveboracensis), Swainson’s Warbler (Limnothlypis swainsonii), Pied-billed Grebe (Podilymbus podiceps), Bay-breasted Warbler (Setophaga castanea), Golden-winged Warbler (Vermivora chrysoptera), Worm-eating Warbler (Helmitheros vermivorum), Prairie Warbler (Setophaga discolor), and Ovenbird (Seiurus aurocapilla). Avian mortality from anthropogenic sources is almost always reported in the aggregate (“number of birds killed”), which cannot detect the species-level effects necessary to make conservation assessments. Our approach to per species estimates could be undertaken for other sources of chronic anthropogenic mortality.  
  Address Communication towers; Mortality; Night lighting; Neotropical migrants; Collisions; Impact assessment; birds  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 54  
Permanent link to this record
 

 
Author Tuxbury, S.M.; Salmon, M. url  doi
openurl 
  Title Competitive interactions between artificial lighting and natural cues during seafinding by hatchling marine turtles Type Journal Article
  Year 2005 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 121 Issue 2 Pages 311-316  
  Keywords Sea turtle; Orientation; Photopollution; Habitat restoration; animals; reptiles; marine turtles; conservation  
  Abstract Artificial lighting disrupts the nocturnal orientation of sea turtle hatchlings as they crawl from their nest to the ocean. Laboratory experiments in an arena were used to simultaneously present artificial light (that attracted the turtles toward “land”) and natural cues (a dark silhouette of the dune behind the beach) that promoted “seaward” orientation. Artificial lighting disrupted seaward crawling in the presence of low silhouettes, but not high silhouettes. Low silhouettes provided adequate cues for seaward crawling when the apparent brightness of artificial light was reduced. Based upon these results, we postulate that artificial light disrupts orientation by competing with natural cues. Current restoration practices at nesting beaches emphasize light reduction. However at many sites some lights cannot be modified. Our results suggest that pairing dune restoration (to enhance natural cues) with light reduction (to the extent possible) should significantly improve hatchling orientation, even at nesting beaches where lighting cannot be entirely eliminated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 79  
Permanent link to this record
 

 
Author van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D. url  doi
openurl 
  Title Effect of spectral composition of artificial light on the attraction of moths Type Journal Article
  Year 2011 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 144 Issue 9 Pages 2274-2281  
  Keywords insects; moths; artificial light; ecology; population dynamics  
  Abstract During the last decades, artificial night lighting has increased globally, which largely affected many plant and animal species. So far, current research highlights the importance of artificial light with smaller wavelengths in attracting moths, yet the effect of the spectral composition of artificial light on species richness and abundance of moths has not been studied systematically. Therefore, we tested the hypotheses that (1) higher species richness and higher abundances of moths are attracted to artificial light with smaller wavelengths than to light with larger wavelengths, and (2) this attraction is correlated with morphological characteristics of moths, especially their eye size. We indeed found higher species richness and abundances of moths in traps with lamps that emit light with smaller wavelengths. These lamps attracted moths with on average larger body mass, larger wing dimensions and larger eyes. Cascading effects on biodiversity and ecosystem functioning, e.g. pollination, can be expected when larger moth species are attracted to these lights. Predatory species with a diet of mainly larger moth species and plant species pollinated by larger moth species might then decline. Moreover, our results indicate a size-bias in trapping moths, resulting in an overrepresentation of larger moth species in lamps with small wavelengths. Our study indicates the potential use of lamps with larger wavelengths to effectively reduce the negative effect of light pollution on moth population dynamics and communities where moths play an important role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 114  
Permanent link to this record
 

 
Author Mazor, T.; Levin, N.; Possingham, H.P.; Levy, Y.; Rocchini, D.; Richardson, A.J.; Kark, S. url  doi
openurl 
  Title Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean Type Journal Article
  Year 2013 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 159 Issue Pages 63-72  
  Keywords Artificial night lights; Caretta caretta; Chelonia mydas; Coastal conservation; Satellite imagery; Sea turtle conservation  
  Abstract Artificial night lights pose a major threat to multiple species. However, this threat is often disregarded in conservation management and action because it is difficult to quantify its effect. Increasing availability of high spatial-resolution satellite images may enable us to better incorporate this threat into future work, particularly in highly modified ecosystems such as the coastal zone. In this study we examine the potential of satellite night light imagery to predict the distribution of the endangered loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle nests in the eastern Mediterranean coastline. Using remote sensing tools and high resolution data derived from the SAC-C satellite and the International Space Station, we examined the relationship between the long term spatial patterns of sea turtle nests and the intensity of night lights along Israel’s entire Mediterranean coastline. We found that sea turtles nests are negatively related to night light intensity and are concentrated in darker sections along the coast. Our resulting GLMs showed that night lights were a significant factor for explaining the distribution of sea turtle nests. Other significant variables included: cliff presence, human population density and infrastructure. This study is one of the first to show that night lights estimated with satellite-based imagery can be used to help explain sea turtle nesting activity at a detailed resolution over large areas. This approach can facilitate the management of species affected by night lights, and will be particularly useful in areas that are inaccessible or where broad-scale prioritization of conservation action is required.  
  Address ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 213  
Permanent link to this record
 

 
Author Bliss-Ketchum, L.L.; de Rivera, C.E.; Turner, B.C.; Weisbaum, D.M. url  doi
openurl 
  Title The effect of artificial light on wildlife use of a passage structure Type Journal Article
  Year 2016 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 199 Issue Pages 25-28  
  Keywords Animals; animal movement; Columbia black-tailed deer; deer; Odocoileus hemionus columbianus; deer mouse; Peromyscus maniculatus; opossum; Didelphis virginiana; artificial light at night  
  Abstract Barriers to animal movement can isolate populations, impacting their genetic diversity, susceptibility to disease, and access to resources. Barriers to movement may be caused by artificial light, which is known to disrupt bird, sea turtle, and bat behavior, but few studies have experimentally investigated the effects of artificial light on movement for a suite of terrestrial vertebrates. Therefore, we studied the effect of ecological light pollution on animal usage of a bridge under-road passage structure. On a weekly basis, sections of the structure were subjected to different light treatments including no light added, followed by a Reference period when lights were off in all the structure sections. Sand track data revealed use by 23 mammals, birds, reptiles and amphibians, nine of which had > 30 tracks for species-level analysis. Columbia black-tailed deer (Odocoileus hemionus columbianus) traversed under unlit bridge sections much less when neighboring sections were lit compared to when none were, suggesting avoidance due to any nearby presence of artificial light. Similarly, deer mouse (Peromyscus maniculatus) and opossum (Didelphis virginiana) track paths were less frequent in the lit sections than the ambient. Crossing was correlated with temporal or spatial factors but not light for three of the other species. These findings suggest that artificial light may be reducing habitat connectivity for some species though not providing a strong barrier for others. Such information is needed to inform mitigation of habitat fragmentation in the face of expanding urbanization.  
  Address Department of Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, USA; blissket(at)pdx.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1445  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: