|   | 
Details
   web
Records
Author Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux Jr., S.A.; Avery, M.L.; Crawford, R.L.; Manville II, A.M.; Travis, E.R.; Drake, D.
Title Avian mortality at communication towers in the United States and Canada: which species, how many, and where? Type Journal Article
Year 2013 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 158 Issue (up) Pages 410-419
Keywords
Abstract Birds migrating to and from breeding grounds in the United States and Canada are killed by the millions in collisions with lighted towers and their guy wires. Avian mortality at towers is highly variable across species, and the importance to each population depends on its size and trajectory. Building on our previous estimate of avian mortality at communication towers, we calculated mortality by species and by regions. To do this, we constructed a database of mortality by species at towers from available records and calculated the mean proportion of each species killed at towers within aggregated Bird Conservation Regions. These proportions were combined with mortality estimates that we previously calculated for those regions. We then compared our estimated bird mortality rates to the estimated populations of these species in the United States and Canada. Neotropical migrants suffer the greatest mortality; 97.4% of birds killed are passerines, mostly warblers (Parulidae, 58.4%), vireos (Vireonidae, 13.4%), thrushes (Turdidae, 7.7%), and sparrows (Emberizidae, 5.8%). Thirteen birds of conservation concern in the United States or Canada suffer annual mortality of 1–9% of their estimated total population. Of these, estimated annual mortality is >2% for Yellow Rail (Coturnicops noveboracensis), Swainson’s Warbler (Limnothlypis swainsonii), Pied-billed Grebe (Podilymbus podiceps), Bay-breasted Warbler (Setophaga castanea), Golden-winged Warbler (Vermivora chrysoptera), Worm-eating Warbler (Helmitheros vermivorum), Prairie Warbler (Setophaga discolor), and Ovenbird (Seiurus aurocapilla). Avian mortality from anthropogenic sources is almost always reported in the aggregate (“number of birds killed”), which cannot detect the species-level effects necessary to make conservation assessments. Our approach to per species estimates could be undertaken for other sources of chronic anthropogenic mortality.
Address Communication towers; Mortality; Night lighting; Neotropical migrants; Collisions; Impact assessment; birds
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 54
Permanent link to this record
 

 
Author Mazor, T.; Levin, N.; Possingham, H.P.; Levy, Y.; Rocchini, D.; Richardson, A.J.; Kark, S.
Title Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean Type Journal Article
Year 2013 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 159 Issue (up) Pages 63-72
Keywords Artificial night lights; Caretta caretta; Chelonia mydas; Coastal conservation; Satellite imagery; Sea turtle conservation
Abstract Artificial night lights pose a major threat to multiple species. However, this threat is often disregarded in conservation management and action because it is difficult to quantify its effect. Increasing availability of high spatial-resolution satellite images may enable us to better incorporate this threat into future work, particularly in highly modified ecosystems such as the coastal zone. In this study we examine the potential of satellite night light imagery to predict the distribution of the endangered loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle nests in the eastern Mediterranean coastline. Using remote sensing tools and high resolution data derived from the SAC-C satellite and the International Space Station, we examined the relationship between the long term spatial patterns of sea turtle nests and the intensity of night lights along Israel’s entire Mediterranean coastline. We found that sea turtles nests are negatively related to night light intensity and are concentrated in darker sections along the coast. Our resulting GLMs showed that night lights were a significant factor for explaining the distribution of sea turtle nests. Other significant variables included: cliff presence, human population density and infrastructure. This study is one of the first to show that night lights estimated with satellite-based imagery can be used to help explain sea turtle nesting activity at a detailed resolution over large areas. This approach can facilitate the management of species affected by night lights, and will be particularly useful in areas that are inaccessible or where broad-scale prioritization of conservation action is required.
Address ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 213
Permanent link to this record
 

 
Author Bliss-Ketchum, L.L.; de Rivera, C.E.; Turner, B.C.; Weisbaum, D.M.
Title The effect of artificial light on wildlife use of a passage structure Type Journal Article
Year 2016 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 199 Issue (up) Pages 25-28
Keywords Animals; animal movement; Columbia black-tailed deer; deer; Odocoileus hemionus columbianus; deer mouse; Peromyscus maniculatus; opossum; Didelphis virginiana; artificial light at night
Abstract Barriers to animal movement can isolate populations, impacting their genetic diversity, susceptibility to disease, and access to resources. Barriers to movement may be caused by artificial light, which is known to disrupt bird, sea turtle, and bat behavior, but few studies have experimentally investigated the effects of artificial light on movement for a suite of terrestrial vertebrates. Therefore, we studied the effect of ecological light pollution on animal usage of a bridge under-road passage structure. On a weekly basis, sections of the structure were subjected to different light treatments including no light added, followed by a Reference period when lights were off in all the structure sections. Sand track data revealed use by 23 mammals, birds, reptiles and amphibians, nine of which had > 30 tracks for species-level analysis. Columbia black-tailed deer (Odocoileus hemionus columbianus) traversed under unlit bridge sections much less when neighboring sections were lit compared to when none were, suggesting avoidance due to any nearby presence of artificial light. Similarly, deer mouse (Peromyscus maniculatus) and opossum (Didelphis virginiana) track paths were less frequent in the lit sections than the ambient. Crossing was correlated with temporal or spatial factors but not light for three of the other species. These findings suggest that artificial light may be reducing habitat connectivity for some species though not providing a strong barrier for others. Such information is needed to inform mitigation of habitat fragmentation in the face of expanding urbanization.
Address Department of Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, USA; blissket(at)pdx.edu
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1445
Permanent link to this record
 

 
Author Riley, W. D.; Davison, P. I.; Maxwell, D. L.; Bendall, B.
Title Street lighting delays and disrupts the dispersal of Atlantic salmon (Salmo salar) fry Type Journal Article
Year 2013 Publication Biological conservation Abbreviated Journal
Volume 158 Issue (up) Pages 140-146
Keywords animals; fish; animal behaviour
Abstract There has been a decline in the abundance of Atlantic salmon (Salmo salar) despite significant conservation measures designed to reduce fishing mortality. Populations at the southern edge of their historical distribution, where anthropogenic impacts on the freshwater environment may be greater, have suffered the largest decline. In this investigation, we compared the timing of Atlantic salmon fry dispersal from incubators in an aquarium under control and ecologically relevant broad spectrum street-lit conditions (median night light intensity = 12 lx). Fry dispersal occurred 2.8 days later (F = 82.9, df = 1,8, p < 0.001), and on average the fry were smaller at dispersal (0.017 g, se = 0.0012, p < 0.001, n = 730), in the incubators exposed to street lighting. Significant disruption to the diel pattern of fry dispersal was also observed. Dispersal under control conditions was significantly directed around a mean time of 4:17 h after dusk (p < 0.001, r = 0.76, n = 1990) with very few fry (<2%) dispersing during daylight hours. Under street lighting, the dispersal of fry was significantly delayed (mean time 6:38 h after dusk; p < 0.001, r = 0.39, n = 2413) with a significant proportion (32%) dispersing during daylight hours. Survival to dispersal in the controlled aquarium conditions was not lower under street-lit conditions (p = 0.21, n = 5000 eggs across 10 incubators). However, in the wild, the period between fry emergence and the establishment of feeding territories is considered to be of critical importance in the dynamics of salmonid populations and any disruption may reduce fitness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1599
Permanent link to this record
 

 
Author Guetté, A.; Godet, L.; Juigner, M.; Robin, M.
Title Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots Type Journal Article
Year 2018 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 223 Issue (up) Pages 97-103
Keywords Remote Sensing; Ecology; Conservation
Abstract Artificial Light At Night (ALAN) has several adverse impacts on biodiversity, and it has been recently used as a proxy to monitor human encroachment on landscapes at large spatial scales. The extent to which ALAN affects protected areas (PAs) and biodiversity hotspots (BHs) remains however untested at large spatial scales. We used this proxy to assess the spatial and temporal trends in the anthropization at a global scale within and around PAs and BHs. We found that ALAN is low and stable over time within PAs, but is the highest in a first outer belt (<25 km) around PAs, and tends to increase in a second outer belt (25–75 km). In the meantime, ALAN is higher within BHs than outside, and is even the highest and increasing over time in an inner belt, close to their periphery. Our results suggest that although PAs are creating safety zones in terms of ALAN, they tend to be more and more isolated from each other by a concentric human encroachment. In contrast, BHs are submitted to an increasing human pressure, especially in their inner periphery. Overall, we suggest integrating ALAN in large-scale conservation policies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1890
Permanent link to this record