toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Hong, F.; Pan, S.; Xu, P.; Xue, T.; Wang, J.; Guo, Y.; Jia, L.; Qiao, X.; Li, L.; Zhai, Y. url  doi
openurl 
  Title Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure Type Journal Article
  Year 2020 Publication Cells Abbreviated Journal Cells  
  Volume 9 Issue 2 Pages in press  
  Keywords Animals; Cells; Lan; hepatointestinal; lipid homeostasis; melatonin; microbiota  
  Abstract Misalignment between natural light rhythm and modern life activities induces disruption of the circadian rhythm. It is mainly evident that light at night (LAN) interferes with the human endocrine system and contributes to the increasing rates of obesity and lipid metabolic disease. Maintaining hepatointestinal circadian homeostasis is vital for improving lipid homeostasis. Melatonin is a chronobiotic substance that plays a main role in stabilizing bodily rhythm and has shown beneficial effects in protecting against obesity. Based on the dual effect of circadian rhythm regulation and antiobesity, we tested the effect of melatonin in mice under constant light exposure. Exposure to 24-h constant light (LL) increased weight and insulin resistance compared with those of the control group (12-h light-12-h dark cycle, LD), and simultaneous supplementation in the melatonin group (LLM) ameliorated this phenotype. Constant light exposure disturbed the expression pattern of a series of transcripts, including lipid metabolism, circadian regulation and nuclear receptors in the liver. Melatonin also showed beneficial effects in improving lipid metabolism and circadian rhythm homeostasis. Furthermore, the LL group had increased absorption and digestion of lipids in the intestine as evidenced by the elevated influx of lipids in the duodenum and decrease in the efflux of lipids in the jejunum. More interestingly, melatonin ameliorated the gut microbiota dysbiosis and improved lipid efflux from the intestine. Thus, these findings offer a novel clue regarding the obesity-promoting effect attributed to LAN and suggest a possibility for obesity therapy by melatonin in which melatonin could ameliorate rhythm disorder and intestinal dysbiosis.  
  Address Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4409 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32093272 Approved no  
  Call Number GFZ @ kyba @ Serial 2854  
Permanent link to this record
 

 
Author (up) Kovac, J.; Husse, J.; Oster, H. url  doi
openurl 
  Title A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock Type Journal Article
  Year 2009 Publication Molecules and Cells Abbreviated Journal Mol Cells  
  Volume 28 Issue 2 Pages 75-80  
  Keywords Human Health; Animals; Biological Clocks/*physiology; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/*physiology; Energy Metabolism/*physiology; Gene Expression Regulation; Homeostasis; Humans; Period Circadian Proteins/genetics/metabolism; Time Factors  
  Abstract The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.  
  Address Circadian Rhythms Group, Max Planck Institute of Biophysical Chemistry, 37077, Gottingen, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1016-8478 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19714310 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 772  
Permanent link to this record
 

 
Author (up) Yoshinaka, K.; Yamaguchi, A.; Matsumura, R.; Node, K.; Tokuda, I.; Akashi, M. url  doi
openurl 
  Title Effect of different light-dark schedules on estrous cycle in mice, and implications for mitigating the adverse impact of night work Type Journal Article
  Year 2017 Publication Genes to Cells : Devoted to Molecular & Cellular Mechanisms Abbreviated Journal Genes Cells  
  Volume 22 Issue 10 Pages 876-884  
  Keywords Animals  
  Abstract Approximately 20% of workers in developed countries are involved in night work. Nevertheless, many studies have strongly suggested that night-work-induced chronic circadian misalignment increases the risk of a diverse range of health problems. Although a relation between night work and irregular menstrual cycles has been indicated epidemiologically, a direct causal link remains elusive. Here, we report that repetitive reversal of light-dark (LD) cycles triggers irregular estrous cycles in mice. The findings showed that the estrous cycle remained irregular for more than four weeks after the mice were returned to regular LD cycles. Importantly, the magnitude of the negative impact of reversed LD cycles on the estrous cycle, or more specifically the decreased number of normal estrous cycles during the observation period, was dependent on the difference in the frequency of LD reversal. Presently, no clear solution to prevent night-work-mediated menstrual abnormalities is available, and reducing night work in modern society is difficult. Our findings indicate that optimizing work schedules could significantly prevent menstrual problems without reducing total night-work time.  
  Address The Research Institute for Time Studies, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1356-9597 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28884885 Approved no  
  Call Number LoNNe @ kyba @ Serial 1722  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: