toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Cajochen, C.; Altanay-Ekici, S.; Munch, M.; Frey, S.; Knoblauch, V.; Wirz-Justice, A. url  doi
openurl 
  Title Evidence that the lunar cycle influences human sleep Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 15 Pages 1485-1488  
  Keywords Adult; Aged; Cross-Sectional Studies; Electroencephalography; Female; Humans; Hydrocortisone/analysis/metabolism; Male; Melatonin/analysis/metabolism; Middle Aged; Moon; Nontherapeutic Human Experimentation; Periodicity; Saliva/metabolism; Sleep/*physiology; Sleep Stages/physiology; Young Adult  
  Abstract Endogenous rhythms of circalunar periodicity ( approximately 29.5 days) and their underlying molecular and genetic basis have been demonstrated in a number of marine species [1, 2]. In contrast, there is a great deal of folklore but no consistent association of moon cycles with human physiology and behavior [3]. Here we show that subjective and objective measures of sleep vary according to lunar phase and thus may reflect circalunar rhythmicity in humans. To exclude confounders such as increased light at night or the potential bias in perception regarding a lunar influence on sleep, we retrospectively analyzed sleep structure, electroencephalographic activity during non-rapid-eye-movement (NREM) sleep, and secretion of the hormones melatonin and cortisol found under stringently controlled laboratory conditions in a cross-sectional setting. At no point during and after the study were volunteers or investigators aware of the a posteriori analysis relative to lunar phase. We found that around full moon, electroencephalogram (EEG) delta activity during NREM sleep, an indicator of deep sleep, decreased by 30%, time to fall asleep increased by 5 min, and EEG-assessed total sleep duration was reduced by 20 min. These changes were associated with a decrease in subjective sleep quality and diminished endogenous melatonin levels. This is the first reliable evidence that a lunar rhythm can modulate sleep structure in humans when measured under the highly controlled conditions of a circadian laboratory study protocol without time cues.  
  Address Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4012 Basel, Switzerland. christian.cajochen@upkbs.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23891110 Approved no  
  Call Number IDA @ john @ Serial 140  
Permanent link to this record
 

 
Author (up) Colwell, C.S. url  doi
openurl 
  Title Circadian Rhythms: Does Burning the Midnight Oil Leave You Weak? Type Journal Article
  Year 2016 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 26 Issue 14 Pages R669-71  
  Keywords Commentary  
  Abstract A new study shows that nocturnal light exposure rapidly disrupts the central circadian clock as well as reduces motor performance and bone health. These findings provide a striking example of the costs of living in a disrupted light/dark cycle.  
  Address Department of Psychiatry and Biobehavioral Sciences, Semel Institute, University of California, Los Angeles, CA 90095, USA. Electronic address: CColwell@mednet.ucla.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27458911 Approved no  
  Call Number LoNNe @ kyba @ Serial 1494  
Permanent link to this record
 

 
Author (up) Dacke, M.; Baird, E.; Byrne, M.; Scholtz, C.H.; Warrant, E.J. url  doi
openurl 
  Title Dung beetles use the Milky Way for orientation Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 4 Pages 298-300  
  Keywords Animals; Beetles/*physiology; *Behavior, Animal; Cues; Feces; *Galaxies; Locomotion; Moon; Motor Activity; Orientation/*physiology; *Stars, Celestial; Vision, Ocular/physiology; Milky Way; insects  
  Abstract When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.  
  Address Department of Biology, Lund University, 223 62 Lund, Sweden. marie.dacke@biol.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23352694 Approved no  
  Call Number IDA @ john @ Serial 116  
Permanent link to this record
 

 
Author (up) Evans, J.A.; Elliott, J.A.; Gorman, M.R. url  doi
openurl 
  Title Dim nighttime illumination accelerates adjustment to timezone travel in an animal model Type Journal Article
  Year 2009 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 19 Issue 4 Pages R156-7  
  Keywords *Adaptation, Physiological; Animals; Behavior, Animal/physiology; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cricetinae; Humans; *Lighting; Mesocricetus; Mice; Motor Activity/physiology; Phodopus; *Photoperiod; Time Factors  
  Abstract Jetlag reflects a mismatch between local and circadian time following rapid timezone travel [1]. Appropriately timed bright light can shift human circadian rhythms but recovery is slow (e.g., 1-2 days per timezone). Most symptoms subside after resynchronization, but chronic jetlag may have enduring negative effects [2], including even accelerated mortality in mice [3]. Melatonin, prescription drugs, and/or exercise may help shift the clock but, like bright light, require complex schedules of application [1]. Thus, there is a need for more efficient and practical treatments for addressing jetlag. In contrast to bright daytime lighting, nighttime conditions have received scant attention. By incorporating more naturalistic nighttime lighting comparable in intensity to dim moonlight, we demonstrate that recovery after simulated jetlag is accelerated when nights are dimly lit rather than completely dark.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19243688 Approved no  
  Call Number IDA @ john @ Serial 152  
Permanent link to this record
 

 
Author (up) Foster, R.G.; Hankins, M.W. url  doi
openurl 
  Title Circadian vision Type Journal Article
  Year 2007 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 17 Issue 17 Pages R746-51  
  Keywords Human Health; Animals; Circadian Rhythm/*physiology; Mice; Photoreceptor Cells, Vertebrate/*physiology; Rats; Rod Opsins/physiology; Vision, Ocular/*physiology  
  Abstract  
  Address Department of Ophthalmology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. russell.foster@eye.ox.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17803920 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 751  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: