|   | 
Details
   web
Records
Author Hoffmann, J.; Schirmer, A.; Eccard, J.A.
Title Light pollution affects space use and interaction of two small mammal species irrespective of personality Type Journal Article
Year 2019 Publication BMC Ecology Abbreviated Journal (up) BMC Ecol
Volume 19 Issue 1 Pages 26
Keywords Animals; Animal personality; Hirec; Interspecific interactions; Nighttime illumination; Outdoor enclosure; Rodents
Abstract BACKGROUND: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark-light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. RESULTS: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. CONCLUSIONS: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level.
Address Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1472-6785 ISBN Medium
Area Expedition Conference
Notes PMID:31215409; PMCID:PMC6582560 Approved no
Call Number GFZ @ kyba @ Serial 2584
Permanent link to this record
 

 
Author Nankoo, S.; Raymond, S.; Galvez-Cloutier, R.
Title The impact of the Jacques Cartier bridge illumination on the food chain: from insects to predators Type Journal Article
Year 2019 Publication Community Ecology Abbreviated Journal (up) Community Ecology
Volume 20 Issue 2 Pages 172-180
Keywords Animals; Ecology
Abstract Artificial light at night can impact numerous diurnal species by influencing their distribution and habits. In this study, artificial lights placed on the Jacques Cartier bridge in Montreal, Canada were evaluated to determine their impact on insects, insectivorous birds and peregrine falcons. The impact was measured the year the illumination begun and the year following (two years in total). Insect distribution and abundance at three different sites around the bridge was measured. Insectivorous bird abundance and activity were evaluated by observing the cliff swallow as a proxy. Peregrine falcon presence and nesting behavior at the bridge was measured. Insects (aerial and aquatic) were found to be more abundant closer to the illuminated part of the bridge and particularly in the year following the illumination's beginning. Similarly, cliff swallows were more abundant at the bridge the year following the start of the illumination and their activity was more important closer to the illuminated section. Peregrine falcons were only present at the bridge in the year following the beginning of the illumination and specifically at the illuminated part of the bridge. No nesting was detected. These three groups are connected to each other through a food chain in which insect abundance impacts insectivorous bird abundance, which in turn impacts peregrine falcon presence. The illumination therefore positively impacts these three groups separately and together through their food chain. This research highlights the importance of monitoring bird and insect population close to the bridge and further continuation of these observations are necessary to determine if the observed tendency will continue to develop throughout the years.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1585-8553 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2705
Permanent link to this record
 

 
Author van Geffen, K.G.; van Grunsven, R.H.A.; van Ruijven, J.; Berendse, F.; Veenendaal, E.M.
Title Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth Type Journal Article
Year 2014 Publication Ecology and Evolution Abbreviated Journal (up) Ecol Evol
Volume 4 Issue 11 Pages 2082–2089
Keywords Caterpillars; development time; diapause; light pollution; pupal mass; pupation; light exposure; light pollution; biology; moths; insects; Mamestra brassicae
Abstract Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well-known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life-history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life-history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex-specific effects of artificial light on caterpillar life-history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life-histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history.
Address 1 Nature Conservation and Plant Ecology Group, Wageningen University, Droevendaalsesteeg 3a, P.O. box 47, 6700 AA, Wageningen, the Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 306
Permanent link to this record
 

 
Author Russ, A.; Reitemeier, S.; Weissmann, A.; Gottschalk, J.; Einspanier, A.; Klenke, R.
Title Seasonal and urban effects on the endocrinology of a wild passerine Type Journal Article
Year 2015 Publication Ecology and Evolution Abbreviated Journal (up) Ecol Evol
Volume 5 Issue 23 Pages 5698–5710
Keywords Animals; endocrinology; blackbirds; birds; European blackbird; Turdus merula; estrone; testosterone; corticosterone
Abstract In order to maximize their fitness, organisms in seasonal environments rely on external cues to optimally time their life-history stages. One of the most important zeitgeber to time reproduction is the photoperiod, but further environmental cues are assessed to fine-tune reproduction due to year-to-year variation in environmental conditions. However, in urbanized environments, the pervasive artificial light at night has altered the natural signal of light and darkness. Accordingly, artificial light at night was repeatedly shown to affect avian reproductive physiology and to advance seasonal reproduction in birds. However, these experiments were mainly conducted in the absence of further environmental cues to facilitate the investigation of the mechanisms which are still poorly understood. Here, we investigate whether the endocrine system of free-ranging European blackbirds (Turdus merula) correlates with the amount of artificial light at night along a rural to urban gradient while the birds still encounter complementary environmental cues including seasonal variation in day length and temperature. Testosterone and estrone were assessed as metabolites in fecal samples and corticosterone in blood from mist-netted blackbirds. We demonstrate that seasonal fluctuations in abiotic factors, individual conditions, but also light at night affect the reproductive and stress physiology of wild European blackbirds. Elevated artificial night light intensities were significantly positively correlated with corticosterone and negatively with female estrone levels. No effects of artificial light were found for testosterone levels. Our results suggest that female blackbirds in particular perceive even low levels of artificial light at night as a weak but chronic stressor that interacts with the hypothalamic-pituitary-gonadal axis and leads to a reduced secretion of reproductive hormones. These findings point out that the impacts of light pollution are diverse and we only slowly disentangle its multiple effects on physiology, ecology, and biodiversity.
Address Department of Conservation Biology, Helmholtz-Centre for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1303
Permanent link to this record
 

 
Author Straka, T.M.; Lentini, P.E.; Lumsden, L.F.; Wintle, B.A.; van der Ree, R.
Title Urban bat communities are affected by wetland size, quality, and pollution levels Type Journal Article
Year 2016 Publication Ecology and Evolution Abbreviated Journal (up) Ecol Evol
Volume 6 Issue 14 Pages 4761-4774
Keywords Ecology, Animals
Abstract Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland-dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free-standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed-effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White-striped free-tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland-dependent and nocturnal fauna.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1499
Permanent link to this record