|   | 
Details
   web
Records
Author Peng, J.; Lin, H.; Chen, Y.; Blaschke, T.; Luo, L.; Xu, Z.; Hu, Y.’na; Zhao, M.; Wu, J.
Title Spatiotemporal evolution of urban agglomerations in China during 2000–2012: a nighttime light approach Type Journal Article
Year 2020 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 35 Issue 2 Pages 421-434
Keywords Remote Sensing
Abstract (up) Context

Urban agglomeration is an advanced spatial organization of cities, usually caused by urbanization processes when cities develop to a certain level – typically associated with higher population density and a certain density of built environment. However, compared with various studies focusing on specific cities, urban agglomerations are still understudied, especially for the quantitative identification of spatiotemporal evolution of urban agglomerations.

Objectives

This study aims to identify the boundary of urban agglomerations in China from 2000 to 2012, and to explore the temporal evolution and spatial difference of urban agglomerations.

Methods

Firstly, the core zone of urban agglomerations was identified using an appropriate threshold of the digital number (DN) of nighttime light. Secondly, the mean patch area and gravity model were used to determine the affected zone of urban agglomerations. Thirdly, spatiotemporal contrast was conducted focusing on the 23 main urban agglomerations in China.

Results

By 2012, the most highly developed Yangtze River Delta and Pearl River Delta urban agglomerations met the standard of world level, with the Beijing–Tianjin–Hebei urban agglomeration for regional level, as well as 11 urban agglomerations for sub-regional level. Regional differences in urban agglomerations between southern and northern China, or between coastal and inland China remained stable over the study period of 2000–2012. Compared with the western urban agglomerations, the outward expansion of eastern urban agglomerations decelerated. From 2000 to 2012, the overall development mode of urban agglomerations shifted from the core-expansion to the peripheral-development, together with slower expansion of urban agglomerations after 2006.

Conclusions

Nighttime light data are effective in exploring the spatiotemporal evolution of urban agglomerations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3131
Permanent link to this record
 

 
Author Voigt, C.C., Scholl, J.M., Bauer, J. et al.
Title Movement responses of common noctule bats to the illuminated urban landscape Type Journal Article
Year 2020 Publication Landscape Ecology Abbreviated Journal
Volume 35 Issue Pages 189-201
Keywords Animals
Abstract (up) Context

Cities are a challenging habitat for obligate nocturnal mammals because of the ubiquitous use of artificial light at night (ALAN). How nocturnal animals move in an urban landscape, particularly in response to ALAN is largely unknown.

Objectives

We studied the movement responses, foraging and commuting, of common noctules (Nyctalus noctula) to urban landscape features in general and ALAN in particular.

Methods

We equipped 20 bats with miniaturized GPS loggers in the Berlin metropolitan area and related spatial positions of bats to anthropogenic and natural landscape features and levels of ALAN.

Results

Common noctules foraged close to ALAN only next to bodies of water or well vegetated areas, probably to exploit swarms of insects lured by street lights. In contrast, they avoided illuminated roads, irrespective of vegetation cover nearby. Predictive maps identified most of the metropolitan area as non-favoured by this species because of high levels of impervious surfaces and ALAN. Dark corridors were used by common noctules for commuting and thus likely improved the permeability of the city landscape.

Conclusions

We conclude that the spatial use of common noctules, previously considered to be more tolerant to light than other bats, is largely constrained by ALAN. Our study is the first individual-based GPS tracking study to show sensitive responses of nocturnal wildlife to light pollution. Approaches to protect urban biodiversity need to include ALAN to safeguard the larger network of dark habitats for bats and other nocturnal species in cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2961
Permanent link to this record
 

 
Author Laforge, A., Pauwels, J., Faure, B., Bas, Y., Kerbiriou, C., Fonderflick, J., & Besnard, A.
Title Reducing light pollution improves connectivity for bats in urban landscapes Type Journal Article
Year 2019 Publication Landscape Ecology Abbreviated Journal
Volume Issue Pages 1-17
Keywords Animals
Abstract (up) Context

Light pollution can alter animal movements and landscape connectivity. This is particularly true in urban landscapes where a need to incorporate conservation issues in urban planning is urgent.

Objectives

We investigated how potential light-reduction scenarios at conurbation scale change landscape connectivity for bats.

Methods

Through random stratified sampling and species distribution modelling, we assessed the relative importance of light pollution on bat presence probability and activity. We recorded bats during one entire night on each 305 sampling points in 2015. In 2016, we surveyed 94 supplementary points to evaluate models performance. We used our spatial predictions to characterize landscape resistance to bat movements. Then we applied a least-cost modelling approach to identify nocturnal corridors and estimated the impact of five light-reduction scenarios on landscape connectivity for two light non-tolerant bat species.

Results

We found that light pollution detected from satellite images was a good predictor of bat presence and activity up to 700 m radius. Our results exhibited contrasting responses to average radiance: M. daubentonii responded negatively, P. nathusii had a positive response for low values then a negative response after a threshold radiance value of 20 W.m−2.sr−1 and E. serotinus responded positively. Five and four light-reduction scenarios significantly improved landscape connectivity for M. daubentonii and P. nathusii respectively.

Conclusions

Light-reduction measures should be included in urban planning to provide sustainable conditions for bats in cities. We advocate for the use of our methodological approach to further studies to find the best trade-off between conservation needs and social acceptability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2345
Permanent link to this record
 

 
Author Underwood, C.N.; Davies, T.W.; Queiros, A.M.
Title Artificial light at night alters trophic interactions of intertidal invertebrates Type Journal Article
Year 2017 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 86 Issue 4 Pages 781-789
Keywords Animals
Abstract (up) Despite being globally widespread in coastal regions, the impacts of light pollution on intertidal ecosystems has received little attention. Intertidal species exhibit many night-time-dependent ecological strategies, including feeding, reproduction, orientation and predator avoidance, which are likely negatively affected by shifting light regimes, as has been observed in terrestrial and aquatic taxa. Coastal lighting may shape intertidal communities through its influence on the nocturnal foraging activity of dogwhelks (Nucella lapillus), a widespread predatory mollusc that structures biodiversity in temperate rocky shores. In the laboratory, we investigated whether the basal and foraging activity of this predator was affected by exposure to night-time lighting both in the presence and absence of olfactory predator cues (Carcinus maenas, common shore crab). Assessments of dogwhelks' behavioural responses to night-time white LED lighting were performed on individuals that had been acclimated to night-time white LED lighting conditions for 16 days and individuals that had not previously been exposed to artificial light at night. Dogwhelks acclimated to night-time lighting exhibited natural refuge-seeking behaviour less often compared to control animals, but were more likely to respond to and handle prey irrespective of whether olfactory predator cues were present. These responses suggest night-time lighting likely increased the energetic demand of dogwhelks through stress, encouraging foraging whenever food was available, regardless of potential danger. Contrastingly, whelks not acclimated under night-time lighting were more likely to respond to the presence of prey under artificial light at night when olfactory predator cues were present, indicating an opportunistic shift towards the use of visual instead of olfactory cues in risk evaluation. These results demonstrate that artificial night-time lighting influences the behaviour of intertidal fauna such that the balance of interspecific interactions involved in community structuring may be affected.
Address Plymouth Marine Laboratory, Plymouth, Devon, PL1 3DH, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:28452048 Approved no
Call Number LoNNe @ kyba @ Serial 1661
Permanent link to this record
 

 
Author Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J.
Title The nature, extent, and ecological implications of marine light pollution Type Journal Article
Year 2014 Publication Frontiers in Ecology and the Environment Abbreviated Journal Frontiers in Ecology and the Environment
Volume 12 Issue 6 Pages 347-355
Keywords Ecology; light pollution; oceans; marine; ecology; ecosystem; Review
Abstract (up) Despite centuries of use, artificial light at night has only recently been recognized as a cause for environmental concern. Its global extent and ongoing encroachment into naturally lit ecosystems has sparked scientific interest into the many ways in which it may negatively affect human health, societal attitudes, scientific endeavors, and biological processes. Yet, perhaps because sources of artificial light are largely land based, the potential for artificial light pollution to interfere with the biology of the ocean has not been explored in any detail. There is little information on how light pollution affects those species, behaviors, and interactions that are informed by the intensity, spectra, and periodicity of natural nighttime light in marine ecosystems. Here, we provide an overview of the extent of marine light pollution, discuss how it changes the physical environment, and explore its potential role in shaping marine ecosystems.
Address Environment and Sustainability Institute, University of Exeter, Cornwall, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1540-9295 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 365
Permanent link to this record