toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S. url  doi
openurl 
  Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
  Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.  
  Volume 600 Issue Pages 179-192  
  Keywords Animals  
  Abstract (up) After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1967  
Permanent link to this record
 

 
Author Secondi, J.; Davranche, A.; Théry, M.; Mondy, N.; Lengagne, T.; Isaac, N. url  doi
openurl 
  Title Assessing the effects of artificial light at night on biodiversity across latitude – Current knowledge gaps Type Journal Article
  Year 2019 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr  
  Volume in press Issue Pages geb.13037  
  Keywords Ecology; biodiversity; Review  
  Abstract (up) Aim

Exposure to artificial light at night (ALAN) is a risk factor for organisms. Considering the spread and increasing intensity of night brightness across the globe, and the key role of light at all biological levels, alterations of ecosystems are expected. Yet, we cannot predict the severity of the effects of ALAN in several biomes because little information is available outside the temperate zone. We reviewed current knowledge and identified traits that could be targeted to fill this knowledge gap in order to contribute to the elaboration of a biogeographical framework for the study of ALAN at the global scale.

Location

Global.

Time period

Current and next decades.

Methods

We analysed the latitudinal variation in ALAN and focused on environmental factors that vary with latitude but that have been overlooked. We reviewed biological traits that exhibit latitudinal variation and depend on light and photoperiod and compiled information about the predicted changes in human demography and road networks across different world regions.

Results

Cloud cover amplifies ALAN far away from urbanized areas. Because of the higher frequency of overcast sky nights, exposure effects may be stronger both at high latitudes and across a large fraction of the intertropical zone, although at different times of the year. Intertropical biomes host the largest fraction of global biodiversity. Although currently they are not the most exposed to ALAN, their human populations are growing, and urbanized areas and road networks are expanding. Hence, ALAN could have strong ecological consequences, with cloud cover as an aggravating factor.

Perspectives

Knowledge gaps currently limit our ability to predict the effects of ALAN in different biomes. Therefore, it will be important to start investigating the consequences of this novel environmental factor across the globe, in order to develop a relevant theoretical framework.
 
  Address  
  Corporate Author Wiley Thesis  
  Publisher English Place of Publication English Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-822X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2758  
Permanent link to this record
 

 
Author Merckx, T.; Van Dyck, H.; Isaac, N. url  doi
openurl 
  Title Urbanization‐driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects Type Journal Article
  Year 2019 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr  
  Volume 28 Issue 10 Pages 1440-1455  
  Keywords Ecology; Animals  
  Abstract (up) Aim

We test whether urbanization drives biotic homogenization. We hypothesize that declines in abundance and species diversity of aerial insects are exacerbated by the urbanization‐driven loss of species with low habitat generalism, mobility and warm‐adaptedness. We predict this homogenization to be more pronounced for nocturnal taxa, and at wider scales for mobile taxa.

Location

Belgium.

Time period

Summers 2014–2015.

Major taxa studied

Lepidoptera.

Methods

We compare communities along urbanization gradients using a shared, replicated and nested sampling design, in which butterflies were counted within 81 grassland and macro‐moths light‐trapped in 12 woodland sites. We quantify taxonomic and functional community composition, the latter via community‐weighted means and variation of species‐specific traits related to specialization, mobility and thermophily. Using linear regression models, variables are analysed in relation to site‐specific urbanization values quantified at seven scales (50–3,200 m radii). At best‐fitting scales, we test for taxonomic homogenization.

Results

With increasing urbanization, abundance, species richness and Shannon diversity severely declined, with butterfly and macro‐moth declines due to local‐ versus landscape‐scale urbanization (200 vs. 800–3,200 m radii, respectively). While taxonomic homogenization was absent for butterflies, urban macro‐moth communities displayed higher nestedness than non‐urban communities. Overall, communities showed mean shifts towards generalist, mobile and thermophilous species, displaying trait convergence too. These functional trait models consistently fit best with urbanization quantified at local scales (100–200 m radii) for butterfly communities, and at local to wider landscape scales (200–800 m radii) for macro‐moth communities.

Main conclusions

Urban communities display functional homogenization that follows urbanization at scales linked to taxon‐specific mobility. Light pollution may explain why homogenization was more pronounced for the nocturnal taxon. We discuss that urbanization is likely to impact flying insect communities across the globe, but also that impacts on their ecosystem functions and services could be mitigated via multi‐scale implementation of urban green infrastructure.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-822X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2588  
Permanent link to this record
 

 
Author Hauptfleisch, M.; Dalton, C. openurl 
  Title Arthropod phototaxis and its possible effect on bird strike risk at two Namibian airports Type Journal Article
  Year 2015 Publication Applied Ecology and Environmental Research Abbreviated Journal Appl. Ecol. & Environ. Res.  
  Volume 13 Issue 4 Pages 957-965  
  Keywords Animals; airport; arthropods; birds; bird strike; phototaxis; Lepidoptera; Namibia  
  Abstract (up) Aircraft wildlife collisions are a global safety and financial problem for the aviation industry, with birds being the main concern. In Namibia, 97% of collisions at Namibia’s two main airports are reported to be with insectivorous birds. Phototaxis was identified as a major attractant to insectivorous

birds, which feed on the arthropods attracted to airport apron and terminal lights. This study considered the effect of light as an attraction at the rurally situated Hosea Kutako International and urban Eros airports. It further investigated the attractiveness of light colour (or wavelength) on arthropod abundance, biomass and diversity. The study found that phototaxis was a significant factor at Hosea Kutako only, and that white light was the main attractant for arthropods, specifically for large moths (Order Lepidoptera),

while yellow and orange light attracted significantly less arthropods. The study indicates a high likelihood that the Hosea Kutako apron lights (white) are an important attractant for arthropods, and therefore indirectly insectivorous birds, which can be reduced by replacing them with orange or yellow filters.
 
  Address Department of Agriculture and Natural Resources Sciences, Polytechnic of Namibia, Private Bag 13388, Windhoek, Namibia; mhauptfleisch@polytechnic.edu.na  
  Corporate Author Thesis  
  Publisher Aloki Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1160  
Permanent link to this record
 

 
Author Mercier, A.; Ycaza, R.; Hamel, J. url  doi
openurl 
  Title Long-term study of gamete release in a broadcast-spawning holothurian: predictable lunar and diel periodicities Type Journal Article
  Year 2007 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.  
  Volume 329 Issue Pages 179-189  
  Keywords Spawning; Periodicity; Lunar cycle; Reproductive synchrony; Holothurians; Echinoderms; Isostichopus fuscus  
  Abstract (up) Annual and monthly patterns of gamete release by the sea cucumber Isostichopus fuscus on the coast of Ecuador were studied to determine the proximal spawning cue and variations in reproductive output throughout the year. Several hundred newly collected individuals were monitored nearly every month for 4 yr. I. fuscus displayed a lunar spawning periodicity: 0.7 to 34.9% of individuals consistently spawned 1 to 4 d after the new moon. Spawning mostly occurred within one evening; however, some gamete release was often recorded over 2 to 4 consecutive evenings. Individuals maintained in captivity for several months retained their spawning periodicity and timing with the lunar cycle. Conversely, newly caught individuals that were shaded from the moonlight did not spawn, thus demonstrating the apparent lack of endogenous rhythms and prevalence of lunar luminance over other cues (i.e. tidal cycle, fluctuations in barometric pressure). On a spawning night, males typically initiated gamete release around sunset; females spawned just after the peak male broadcast. The percentage of spawning individuals was higher and a greater overlap between male and female peak spawning activity was observed during clear conditions compared with overcast conditions. The gonads of individuals that did not spawn in a given month showed a variety of maturity levels, including post-spawning, growth and mature gametogenic stages. Hence, the individual reproductive cycle is apparently longer than the monthly spawning periodicity observed at the population level, enabling I. fuscus populations to be reproductive year round.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 104  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: