|   | 
Details
   web
Records
Author (down) Kurvers, R.H.J.M.; Hölker, F.
Title Bright nights and social interactions: a neglected issue Type Journal Article
Year 2014 Publication Behavioral Ecology Abbreviated Journal Behav. Ecol.
Volume 26 Issue 2 Pages 334-339
Keywords Ecology; group dynamics; light at night; light pollution; social consequence; social interactions; social synchrony
Abstract Artificial light at night is an increasing threat for ecological processes. Previous work has highlighted the effects of nighttime light on individuals and on higher levels of biological organization, such as community ecology and ecosystem functioning. Here, we focus on the effects of artificial light at night on social interactions and group dynamics. We discuss 4 main ways of how light pollution is expected to alter social interactions and group dynamics. First, light at night can alter the activity patterns of individuals and this is predicted to affect the social network structure of populations, which in turn affects the transfer of information and diseases. Second, changes in activity patterns and disrupted biological rhythms are expected to reduce behavioral synchrony in social processes such as reproduction, migration, and dispersal. Third, increased light at night is expected to affect the communication between individuals; primarily, it will increase the opportunities for visual social information transfer. Last, artificial nighttime light is expected to lower social competence, with subsequent negative effects on aggressive interactions and group coordination. Throughout the article, we propose testable hypotheses and identify suitable study species, and we hope that this article inspires future research on the effects of bright nights on social interactions and group dynamics.
Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Corporate Author Thesis
Publisher Oxford Journals Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1082
Permanent link to this record
 

 
Author (down) Kelber, A.
Title Light intensity limits foraging activity in nocturnal and crepuscular bees Type Journal Article
Year 2005 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology
Volume 17 Issue 1 Pages 63-72
Keywords bees; eyes; foraging; insects; ocelli; sensitivity; visual ecology
Abstract A crepuscular or nocturnal lifestyle has evolved in bees several times independently, probably to explore rewarding pollen sources without competition and to minimize predation and nest parasites. Despite these obvious advantages, only few bee species are nocturnal. Here we show that the sensitivity of the bee apposition eye is a major factor limiting the ability to forage in dim light. We present data on eye size, foraging times, and light levels for Megalopta genalis (Augochlorini, Halictidae) in Panama, and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae) in Utah, USA. M. genalis females forage exclusively during twilight, but as a result of dim light levels in the rain forest, they are adapted to extremely low intensities. The likely factor limiting their foraging activity is finding their nest entrance on return from a foraging trip. The lowest light intensity at which they can do this, both in the morning and the evening, is 0.0001 cd m−2. Therefore, they leave the nest at dimmer light levels in the morning than in the evening. Lasioglossum (Sphecodogastra) foraging is limited by light intensity in the evening, but probably by temperature in the morning in the temperate climate of Utah. We propose that the evolution of nocturnality in bees was favored by the large variance in the size of females.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1045-2249 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 119
Permanent link to this record
 

 
Author (down) Kehoe, R.C.; Cruse, D.; Sanders, D.; Gaston, K.J.; van Veen, F.J.F.
Title Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics Type Journal Article
Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 8 Issue 17 Pages 8761-8769
Keywords Animals; Ecology
Abstract With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.
Address College of Life and Environmental Sciences University of Exeter Penryn Cornwall UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes PMID:30271543; PMCID:PMC6157684 Approved no
Call Number NC @ ehyde3 @ Serial 2100
Permanent link to this record
 

 
Author (down) Katz, N.; Pruitt, J.N.; Scharf, I.
Title The complex effect of illumination, temperature, and thermal acclimation on habitat choice and foraging behavior of a pit-building wormlion Type Journal Article
Year 2017 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav Ecol Sociobiol
Volume 71 Issue 9 Pages
Keywords Animals
Abstract Habitat selection has consequences for an animal’s fitness, especially for sit-and-wait predators with limited mobility, and which cannot always correct earlier suboptimal choices. Environmental change may nevertheless lead individuals to relocate to another site, although such relocations can be energetically costly or risky. Temperature and illumination are two important factors that undergo change in seasonal and daily cycles that may impact habitat quality. Animals must therefore either acclimate to the new conditions or relocate. Wormlions are sit-and-wait, trap-building predators whose success in foraging is highly dependent on their surroundings. Here, we manipulated temperature (high, low, and moderate) and let the wormlions choose between lit and shaded conditions. We found that the typical wormlion preference for shaded microhabitats decreased with increasing temperature. We then followed wormlion behavior under a full-factorial design of two constant illumination conditions (light vs. shade) and three temperatures. Although both constant light and high temperature reduced foraging performance, expressed in pit construction tendency and pit area, the two conditions had a non-additive effect. Acclimation to extreme thermal conditions moderated the negative effects of such temperatures, expressed in a higher tendency to construct a pit, and equalized performance across temperatures. Finally, the high temperature reduced behavioral consistency while acclimation increased it, suggesting that consistency is impaired by unfavorable environmental change. To conclude, while an environmental change usually affects several environmental factors simultaneously, the induced behavioral change is neither synergic nor additive and can even differ from the response to each unfavorable environmental factor in isolation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0340-5443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1702
Permanent link to this record
 

 
Author (down) Huffeldt, N.P.
Title Photic Barriers to Poleward Range-shifts Type Journal Article
Year 2020 Publication Trends in Ecology & Evolution Abbreviated Journal Trends Ecol Evol
Volume in press Issue Pages
Keywords Animals; biological rhythm; global climate change; phenology; photoperiod; photoreception; range-shift
Abstract With climate warming, organisms are shifting their ranges towards the poles, tracking their optimal thermal environments. Day-length, the driver of daily and annual timing, is, however, fixed by latitude and date. Timing and photoreception mechanisms adapted to ancestral photic environments may restrict range-shift capacity, resulting in photic barriers to range-shifts.
Address Greenland Institute of Natural Resources, 3900 Nuuk, Greenland; Arctic Ecosystem Ecology, Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark. Electronic address: nph@bios.au.dk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5347 ISBN Medium
Area Expedition Conference
Notes PMID:32473743 Approved no
Call Number GFZ @ kyba @ Serial 2992
Permanent link to this record