|   | 
Details
   web
Records
Author (down) Zozaya, S.M.; Alford, R.A.; Schwarzkopf, L.
Title Invasive house geckos are more willing to use artificial lights than are native geckos: House geckos and artificial lights Type Journal Article
Year 2015 Publication Austral Ecology Abbreviated Journal Austral Ecology
Volume 40 Issue 8 Pages 982–987
Keywords Animals
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1442-9985 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1209
Permanent link to this record
 

 
Author (down) Zachary M. Cravens, Veronica A. Brown, Timothy J. Divoll, Justin G. Boyles
Title Illuminating prey selection in an insectivorous bat community, exposed to artificial light at night Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal
Volume 55 Issue 2 Pages 705-713
Keywords Animals; Ecology
Abstract 1.Light pollution has been increasing around the globe and threatens to disturb natural rhythms of wildlife species. Artificial light impacts the behaviour of insectivorous bats in numerous ways, including foraging behaviour, which may in turn lead to altered prey selection.

2.In a manipulative field experiment, we collected faecal samples from six species of insectivorous bats in naturally dark and artificially lit conditions, and identified prey items using molecular methods to investigate effects of light pollution on prey selection.

3.Proportional differences of identified prey were not consistent and appeared to be species specific. Red bats, little brown bats, and gray bats exhibited expected increases in moths at lit sites. Beetle-specialist big brown bats had a sizeable increase in beetle consumption around lights, while tri-colored bats and evening bats showed little change in moth consumption between experimental conditions. Dietary overlap was high between experimental conditions within each species, and dietary breadth only changed significantly between experimental conditions in one species, the little brown bat.

4.Policy implications. Our results, building on others, demonstrate that bat-insect interactions may be more nuanced than the common assertion that moth consumption increases around lights. They highlight the need for a greater mechanistic understanding of bat-light interactions to predict which species will be most affected by light pollution. Given differences in bat and insect communities, we advocate biologists, land stewards, and civil planners work collaboratively to determine lighting solutions that minimize changes in foraging behaviour of species in the local bat community. Such efforts may allow stakeholders to more effectively craft management strategies to minimize unnatural shifts in prey selection caused by artificial lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1783
Permanent link to this record
 

 
Author (down) Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S.
Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume 600 Issue Pages 179-192
Keywords Animals
Abstract After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1967
Permanent link to this record
 

 
Author (down) Welbers, A.A.M.H.; van Dis, N.E.; Kolvoort, A.M.; Ouyang, J.; Visser, M.E.; Spoelstra, K.; Dominoni, D.M.
Title Artificial Light at Night Reduces Daily Energy Expenditure in Breeding Great Tits (Parus major) Type Journal Article
Year 2017 Publication Frontiers in Ecology and Evolution Abbreviated Journal Front. Ecol. Evol.
Volume 5 Issue Pages
Keywords Animals
Abstract The ecological impact of artificial light at night (ALAN) is an increasingly recognized process that accompanies expanding urbanization. Yet, we have limited knowledge on the impact of ALAN on wild species, and on the potential to mitigate any negative effects by using different light sources and colors. In birds, effects of ALAN on activity levels are reported for several species and, hence, their daily energy expenditure (DEE) may be affected. DEE is a potent mediator of life-history trade-offs and fitness and thus an important aspect to consider when examining the potential long-term ecological effects of ALAN. Previous work has suggested that birds exposed to ALAN show higher levels of provisioning and nocturnal activity, suggesting that white ALAN increases DEE. Other factors regulating DEE, such as provisioning behavior and food availability, might also respond to ALAN and thus indirectly affect DEE. We tested the hypothesis that ALAN increases DEE using an experimental setup where four previously unlit transects were illuminated with either white, green, or red LED light, or left dark as a control treatment. This setup was replicated in eight locations across the Netherlands. We measured DEE of our focal species, the great tit (Parus major), using a novel doubly labeled water technique that uses breath rather than blood samples. Contrary to our expectations, birds feeding their offspring under white and green ALAN showed lower DEE compared to birds in the control dark treatment. Differences in chick provisioning activity did not explain this result, as neither visit rates nor daily activity timing was affected by light treatment. However, food availability under white and green light was much higher compared to red light and the dark control. This difference strongly suggests that the lower DEE under white and green ALAN sites is a consequence of higher food availability in these treatments. This result shows that there can be positive, indirect effects of ALAN for breeding song birds which may balance against the negative direct effects shown in previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-701X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2460
Permanent link to this record
 

 
Author (down) Weishampel, Z.A.; Cheng, W.-H.; Weishampel, J.F.
Title Sea turtle nesting patterns in Florida vis-à-vis satellite-derived measures of artificial lighting Type Journal Article
Year 2016 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal Remote Sens Ecol Conserv
Volume 2 Issue 1 Pages 59-72
Keywords Animals; sea turtles; Artificial light; DMSP; light pollution; marine turtles; nest surveys; simultaneous autoregressive modeling; Florida; United States; Loggerhead turtle; Caretta caretta; Leatherback turtle; Dermochelys coriacea; Green turtle; Chelonia mydas
Abstract Light pollution contributes to the degradation and reduction of habitat for wildlife. Nocturnally nesting and hatching sea turtle species are particularly sensitive to artificial light near nesting beaches. At local scales (0.01–0.1 km), artificial light has been experimentally shown to deter nesting females and disorient hatchlings. This study used satellite-based remote sensing to assess broad scale (~1–100s km) effects of artificial light on nesting patterns of loggerhead (Caretta caretta), leatherback (Dermochelys coriacea) and green turtles (Chelonia mydas) along the Florida coastline. Annual artificial nightlight data from 1992 to 2012 acquired by the Defense Meteorological Satellite Program (DMSP) were compared to an extensive nesting dataset for 368, ~1 km beach segments from this same 21-year period. Relationships between nest densities and artificial lighting were derived using simultaneous autoregressive models to adjust for the presence of spatial autocorrelation. Though coastal urbanization increased in Florida during this period, nearly two-thirds of the surveyed beaches exhibited decreasing light levels (N = 249); only a small fraction of the beaches showed significant increases (N = 52). Nest densities for all three sea turtle species were negatively influenced by artificial light at neighborhood scales (<100 km); however, only loggerhead and green turtle nest densities were influenced by artificial light levels at the individual beach scale (~1 km). Satellite monitoring shows promise for light management of extensive or remote areas. As the spectral, spatial, and temporal resolutions of the satellite data are coarse, ground measurements are suggested to confirm that artificial light levels on beaches during the nesting season correspond to the annual nightlight measures.
Address Department of Biology, University of Central Florida, Orlando, FL 32816 USA; John.Weishampel(at)ucf.edu
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2056-3485 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1346
Permanent link to this record