|   | 
Details
   web
Records
Author (down) Kyba, C.C.M.; Hölker, F.
Title Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Type Journal Article
Year 2013 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 28 Issue 9 Pages 1637-1640
Keywords skyglow; light pollution; biodiversity
Abstract The skyglow from cities at night is one of the most dramatic modifications that humans have made to Earth’s biosphere, and it is increasingly extending into nocturnal landscapes (nightscapes) far beyond urban areas. This scattered light is dim and homogenous compared to a lit street, but can be bright compared to natural celestial light sources, such as stars. Because of the large area of Earth affected by artificial skyglow, it is essential to verify whether skyglow is a selective pressure in nocturnal landscapes. We propose two scientific approaches that could examine whether skyglow affects biodiversity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 35
Permanent link to this record
 

 
Author (down) Kyba, C.C.M.; Conrad, J.; Shatwell, T.
Title Lunar illuminated fraction is a poor proxy for moonlight exposure Type Journal Article
Year 2020 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol
Volume 4 Issue Pages 318-319
Keywords Animals; Moonlight; Commentary
Abstract San-Jose et al. recently demonstrated that the colouration of barn owls impacts their hunting success under moonlit conditions, and therefore affects their reproductive success1. They found that near full-moon conditions, the youngest nestlings with white fathers were fed more and were likelier to survive than those with redder fathers. While the study is interesting, the percentage of the Moon that is illuminated (lunar illuminated fraction) is unfortunately a poor proxy for moonlight exposure. We suggest that lunar illluminated fraction should, in general, never be used in biological studies, as alternative variables such as horizontal illuminance better represent moonlight exposure, and therefore offer a greater chance of detecting the effects of moonlight. Here, we provide a brief explanation of how moonlight varies with season and time of night, and stress the need for greater collaboration between biologists and astronomers or physicists in such studies in the future.
Address Seenforschung, Helmholtz-Zentrum fur Umweltforschung-UFZ, Magdeburg, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-334X ISBN Medium
Area Expedition Conference
Notes PMID:32015523 Approved no
Call Number GFZ @ kyba @ Serial 2827
Permanent link to this record
 

 
Author (down) Kurvers, R.H.J.M.; Hölker, F.
Title Bright nights and social interactions: a neglected issue Type Journal Article
Year 2014 Publication Behavioral Ecology Abbreviated Journal Behav. Ecol.
Volume 26 Issue 2 Pages 334-339
Keywords Ecology; group dynamics; light at night; light pollution; social consequence; social interactions; social synchrony
Abstract Artificial light at night is an increasing threat for ecological processes. Previous work has highlighted the effects of nighttime light on individuals and on higher levels of biological organization, such as community ecology and ecosystem functioning. Here, we focus on the effects of artificial light at night on social interactions and group dynamics. We discuss 4 main ways of how light pollution is expected to alter social interactions and group dynamics. First, light at night can alter the activity patterns of individuals and this is predicted to affect the social network structure of populations, which in turn affects the transfer of information and diseases. Second, changes in activity patterns and disrupted biological rhythms are expected to reduce behavioral synchrony in social processes such as reproduction, migration, and dispersal. Third, increased light at night is expected to affect the communication between individuals; primarily, it will increase the opportunities for visual social information transfer. Last, artificial nighttime light is expected to lower social competence, with subsequent negative effects on aggressive interactions and group coordination. Throughout the article, we propose testable hypotheses and identify suitable study species, and we hope that this article inspires future research on the effects of bright nights on social interactions and group dynamics.
Address Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
Corporate Author Thesis
Publisher Oxford Journals Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1082
Permanent link to this record
 

 
Author (down) Kelber, A.
Title Light intensity limits foraging activity in nocturnal and crepuscular bees Type Journal Article
Year 2005 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology
Volume 17 Issue 1 Pages 63-72
Keywords bees; eyes; foraging; insects; ocelli; sensitivity; visual ecology
Abstract A crepuscular or nocturnal lifestyle has evolved in bees several times independently, probably to explore rewarding pollen sources without competition and to minimize predation and nest parasites. Despite these obvious advantages, only few bee species are nocturnal. Here we show that the sensitivity of the bee apposition eye is a major factor limiting the ability to forage in dim light. We present data on eye size, foraging times, and light levels for Megalopta genalis (Augochlorini, Halictidae) in Panama, and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae) in Utah, USA. M. genalis females forage exclusively during twilight, but as a result of dim light levels in the rain forest, they are adapted to extremely low intensities. The likely factor limiting their foraging activity is finding their nest entrance on return from a foraging trip. The lowest light intensity at which they can do this, both in the morning and the evening, is 0.0001 cd m−2. Therefore, they leave the nest at dimmer light levels in the morning than in the evening. Lasioglossum (Sphecodogastra) foraging is limited by light intensity in the evening, but probably by temperature in the morning in the temperate climate of Utah. We propose that the evolution of nocturnality in bees was favored by the large variance in the size of females.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1045-2249 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 119
Permanent link to this record
 

 
Author (down) Kehoe, R.C.; Cruse, D.; Sanders, D.; Gaston, K.J.; van Veen, F.J.F.
Title Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics Type Journal Article
Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 8 Issue 17 Pages 8761-8769
Keywords Animals; Ecology
Abstract With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.
Address College of Life and Environmental Sciences University of Exeter Penryn Cornwall UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes PMID:30271543; PMCID:PMC6157684 Approved no
Call Number NC @ ehyde3 @ Serial 2100
Permanent link to this record