|   | 
Details
   web
Records
Author Cabrera-Cruz, S.A.; Smolinsky, J.A.; McCarthy, K.P.; Buler, J.J.
Title Urban areas affect flight altitudes of nocturnally migrating birds Type Journal Article
Year 2019 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 88 Issue 12 Pages (down) 1873-1887
Keywords Remote Sensing; Animals; Aeroecology; bird migration; flight altitude; light pollution; radar; urbanization
Abstract 1.Urban areas affect terrestrial ecological processes and local weather, but we know little about their effect on aerial ecological processes. 2.Here, we identify urban from non-urban areas based on the intensity of artificial light at night (ALAN) in the landscape, and, along with weather covariates, evaluate the effect of urbanization on flight altitudes of nocturnally migrating birds. 3.Birds are attracted to ALAN, hence we predicted that altitudes would be lower over urban than over non-urban areas. However, other factors associated with urbanization may also affect flight altitudes. For example, surface temperature and terrain roughness are higher in urban areas, increasing air turbulence, height of the boundary layer, and affecting local winds. 4.We used data from nine weather surveillance radars in the eastern US to estimate altitudes at five quantiles of the vertical distribution of birds migrating at night over urban and non-urban areas during five consecutive spring and autumn migration seasons. We fit generalized linear mixed models by season for each of the five quantiles of bird flight altitude and their differences between urban and non-urban areas. 5.After controlling for other environmental variables and contrary to our prediction, we found that birds generally fly higher over urban areas compared to rural areas in spring, and marginally higher at the mid layers of the vertical distribution in autumn. We also identified a small interaction effect between urbanization and crosswind speed, and between urbanization and surface air temperature, on flight altitudes. We also found that the difference in flight altitudes of nocturnally migrating birds between urban and non-urban areas varied among radars and seasons, but were consistently higher over urban areas throughout the years sampled. 6.Our results suggest that the effects of urbanization on wildlife extend into the aerosphere, and are complex, stressing the need of understanding the influence of anthropogenic factors on airspace habitat. This article is protected by copyright. All rights reserved.
Address Department of Entomology and Wildlife Ecology, University of Delaware, Delaware, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:31330569 Approved no
Call Number GFZ @ kyba @ Serial 2604
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hölker, F.
Title Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Type Journal Article
Year 2013 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 28 Issue 9 Pages (down) 1637-1640
Keywords skyglow; light pollution; biodiversity
Abstract The skyglow from cities at night is one of the most dramatic modifications that humans have made to Earth’s biosphere, and it is increasingly extending into nocturnal landscapes (nightscapes) far beyond urban areas. This scattered light is dim and homogenous compared to a lit street, but can be bright compared to natural celestial light sources, such as stars. Because of the large area of Earth affected by artificial skyglow, it is essential to verify whether skyglow is a selective pressure in nocturnal landscapes. We propose two scientific approaches that could examine whether skyglow affects biodiversity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 35
Permanent link to this record
 

 
Author Merckx, T.; Van Dyck, H.; Isaac, N.
Title Urbanization‐driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects Type Journal Article
Year 2019 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr
Volume 28 Issue 10 Pages (down) 1440-1455
Keywords Ecology; Animals
Abstract Aim

We test whether urbanization drives biotic homogenization. We hypothesize that declines in abundance and species diversity of aerial insects are exacerbated by the urbanization‐driven loss of species with low habitat generalism, mobility and warm‐adaptedness. We predict this homogenization to be more pronounced for nocturnal taxa, and at wider scales for mobile taxa.

Location

Belgium.

Time period

Summers 2014–2015.

Major taxa studied

Lepidoptera.

Methods

We compare communities along urbanization gradients using a shared, replicated and nested sampling design, in which butterflies were counted within 81 grassland and macro‐moths light‐trapped in 12 woodland sites. We quantify taxonomic and functional community composition, the latter via community‐weighted means and variation of species‐specific traits related to specialization, mobility and thermophily. Using linear regression models, variables are analysed in relation to site‐specific urbanization values quantified at seven scales (50–3,200 m radii). At best‐fitting scales, we test for taxonomic homogenization.

Results

With increasing urbanization, abundance, species richness and Shannon diversity severely declined, with butterfly and macro‐moth declines due to local‐ versus landscape‐scale urbanization (200 vs. 800–3,200 m radii, respectively). While taxonomic homogenization was absent for butterflies, urban macro‐moth communities displayed higher nestedness than non‐urban communities. Overall, communities showed mean shifts towards generalist, mobile and thermophilous species, displaying trait convergence too. These functional trait models consistently fit best with urbanization quantified at local scales (100–200 m radii) for butterfly communities, and at local to wider landscape scales (200–800 m radii) for macro‐moth communities.

Main conclusions

Urban communities display functional homogenization that follows urbanization at scales linked to taxon‐specific mobility. Light pollution may explain why homogenization was more pronounced for the nocturnal taxon. We discuss that urbanization is likely to impact flying insect communities across the globe, but also that impacts on their ecosystem functions and services could be mitigated via multi‐scale implementation of urban green infrastructure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2588
Permanent link to this record
 

 
Author Almpanidou, V.; Tsapalou, V.; Tsavdaridou, A.I.; Mazaris, A.D.
Title The dark side of raptors’ distribution ranges under climate change Type Journal Article
Year 2020 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 35 Issue 6 Pages (down) 1435-1443
Keywords Animals; Remote sensing
Abstract Context

Artificial light at night (ALAN) represents a significant threat to biodiversity. Given that protected areas (PAs) are in relative darkness compared to the surrounding sites, they could be considered an effective tool towards eliminating the impacts of ALAN. However, the extent to which climate change-induced shifts would drive species out of PAs and thus, alter their exposure to ALAN remains an open question.

Objectives

We assessed the extent and protection coverage of dark areas across the current and future distributions of 39 raptor species of European conservation interest.

Methods

We initially developed a set of distribution models using current and projected climatic variables. Next, we used a satellite dataset of nighttime lights composite to determine the spread of ALAN within the raptors’ ranges. Finally, we applied three indices of proportional changes in the expansion of suitable habitats and dark areas to quantify patterns in ALAN within the current and future raptors’ ranges across Europe.

Results

Our analyses revealed that potential future distribution shifts of raptors will lead to changes in the exposure of species to ALAN, with these patterns being rather unfavourable for most of them. Still, PAs in Europe were found to offer a relative high proportion of dark areas which overlap with the current and future raptors range.

Conclusions

Our findings provided some first insights into the spatial conflict between species ranges and ALAN, considering potential distribution shifts driven by climate change. The proposed methodology offers the means to identify potential dark refugia towards prioritizing conservation actions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3157
Permanent link to this record
 

 
Author Buxton, R.T.; Seymoure, B.M.; White, J.; Angeloni, L.M.; Crooks, K.R.; Fristrup, K.; McKenna, M.F.; Wittemyer, G.
Title The relationship between anthropogenic light and noise in U.S. national parks Type Journal Article
Year 2020 Publication Landscape Ecology Abbreviated Journal Landscape Ecol
Volume 35 Issue 6 Pages (down) 1371-1384
Keywords Remote Sensing; Conservation; Skyglow
Abstract Context

Natural sound and light regulate fundamental biological processes and are central to visitor experience in protected areas. As such, anthropogenic light and noise have negative effects on both wildlife and humans. While prior studies have examined the distribution and levels of light or noise, joint analyses are rarely undertaken despite their potentially cumulative effects.

Objectives

We examine the relationship between different types of anthropogenic light and noise conditions and what factors drive correlation, co-occurrences, and divergence between them.

Methods

We overlaid existing geospatial models of anthropogenic light and noise with landscape predictors in national parks across the continental U.S.

Results

Overlapping dark and quiet were the most common conditions (82.5–87.1% of park area), representing important refuges for wildlife and human experience. We found low correlation between anthropogenic light and noise (Spearman’s R < 0.25), with the exception of parks with a higher density of roads. Park land within urban areas had the highest probability of co-occurring high light and noise exposure, while park areas with divergent light and noise exposure (e.g., high light and low noise) were most commonly found 5–20 km from urban areas and in parks with roads present.

Conclusions

These analyses demonstrate that light and noise exposure are not always correlated in national parks, which was unexpected because human activities tend to produce both simultaneously. As such, mitigation efforts for anthropogenic light and noise will require efforts targeting site-specific sources of noise and light. Protecting and restoring sensory environments will involve constructive partnerships capable of reconciling diverse community interests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3155
Permanent link to this record