|   | 
Details
   web
Records
Author Zachary M. Cravens, Veronica A. Brown, Timothy J. Divoll, Justin G. Boyles
Title Illuminating prey selection in an insectivorous bat community, exposed to artificial light at night Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal
Volume 55 Issue 2 Pages 705-713
Keywords Animals; Ecology
Abstract 1.Light pollution has been increasing around the globe and threatens to disturb natural rhythms of wildlife species. Artificial light impacts the behaviour of insectivorous bats in numerous ways, including foraging behaviour, which may in turn lead to altered prey selection.

2.In a manipulative field experiment, we collected faecal samples from six species of insectivorous bats in naturally dark and artificially lit conditions, and identified prey items using molecular methods to investigate effects of light pollution on prey selection.

3.Proportional differences of identified prey were not consistent and appeared to be species specific. Red bats, little brown bats, and gray bats exhibited expected increases in moths at lit sites. Beetle-specialist big brown bats had a sizeable increase in beetle consumption around lights, while tri-colored bats and evening bats showed little change in moth consumption between experimental conditions. Dietary overlap was high between experimental conditions within each species, and dietary breadth only changed significantly between experimental conditions in one species, the little brown bat.

4.Policy implications. Our results, building on others, demonstrate that bat-insect interactions may be more nuanced than the common assertion that moth consumption increases around lights. They highlight the need for a greater mechanistic understanding of bat-light interactions to predict which species will be most affected by light pollution. Given differences in bat and insect communities, we advocate biologists, land stewards, and civil planners work collaboratively to determine lighting solutions that minimize changes in foraging behaviour of species in the local bat community. Such efforts may allow stakeholders to more effectively craft management strategies to minimize unnatural shifts in prey selection caused by artificial lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1783
Permanent link to this record
 

 
Author Gaston, K.J.; Holt, L.A.
Title Nature, extent and ecological implications of night‐time light from road vehicles Type Journal Article
Year 2018 Publication Journal of Applied Ecology Abbreviated Journal
Volume 55 Issue 5 Pages 2296-2307
Keywords Animals; Ecology; Lighting; Review
Abstract The erosion of night‐time by the introduction of artificial lighting constitutes a profound pressure on the natural environment. It has altered what had for millennia been reliable signals from natural light cycles used for regulating a host of biological processes, with impacts ranging from changes in gene expression to ecosystem processes.

Studies of these impacts have focused almost exclusively on those resulting from stationary sources of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle headlights, contribute substantial additional emissions.

The ecological impacts of light emissions from vehicle headlights are likely to be especially high because these are (1) focused so as to light roadsides at higher intensities than commonly experienced from other sources, and well above activation thresholds for many biological processes; (2) projected largely in a horizontal plane and thus can carry over long distances; (3) introduced into much larger areas of the landscape than experience street lighting; (4) typically broad “white” spectrum, which substantially overlaps the action spectra of many biological processes and (5) often experienced at roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have major biological impacts.

The ecological impacts of road vehicle headlights will markedly increase with projected global growth in numbers of vehicles and the road network, increasing the local severity of emissions (because vehicle numbers are increasing faster than growth in the road network) and introducing emissions into areas from which they were previously absent. The effects will be further exacerbated by technological developments that are increasing the intensity of headlight emissions and the amounts of blue light in emission spectra.

Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1841
Permanent link to this record
 

 
Author Straka,T. M., Wolf, M., Gras, P., Buchholz, S., & Voigt, C. C.
Title Tree Cover Mediates the Effect of Artificial Light on Urban Bats Type Journal Article
Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal
Volume 7 Issue Pages 91
Keywords Animals; ALAN; bats; canopy cover; chiroptera; light-emitting diodes; LED; trees; Ultraviolet; urban
Abstract With urban areas growing worldwide, so does artificial light at night (ALAN) which negatively affects many nocturnal animals, including bats. The response of bats to ALAN ranges from some opportunistic species taking advantage of insect aggregations around street lamps, particularly those emitting ultraviolet (UV) light, to others avoiding lit areas at all. Tree cover has been suggested to mitigate the negative effects of ALAN on bats by shielding areas against light scatter. Here, we investigated the effect of tree cover on the relationship between ALAN and bats in Berlin, Germany. In particular, we asked if this interaction varies with the UV light spectrum of street lamps and also across urban bat species. We expected trees next to street lamps to block ALAN, making the adjacent habitat more suitable for all species, irrespective of the wavelength spectrum of the light source. Additionally, we expected UV emitting lights next to trees to attract insects and thus, opportunistic bats. In summer 2017, we recorded bat activity at 22 green open spaces in Berlin using automated ultrasonic detectors. We analyzed bat activity patterns and landscape variables (number of street lamps with and without UV light emission, an estimate of light pollution, and tree cover density around each recording site within different spatial scales) using generalized linear mixed-effects models with a negative binomial distribution. We found a species-specific response of bats to street lamps with and without UV light, providing a more detailed picture of ALAN impacts than simply total light radiance. Moreover, we found that dense tree cover dampened the negative effect of street lamps without UV for open-space foraging bats of the genera Nyctalus, Eptesicus, and Vespertilio, yet it amplified the already existing negative or positive effect of street lamps with or without UV on Pipistrellus pipistrellus, P. pygmaeus, and Myotis spp. Our study underpins the importance of minimizing artificial light at night close to vegetation, particularly for bats adapted to spatial complexity in the environment (i.e., clutter-adapted species), and to increase dense vegetation in urban landscape to provide, besides roosting opportunities, protection against ALAN for open-space foraging bats in city landscapes.
Address Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2302
Permanent link to this record
 

 
Author Frank, T. M., Gabbert, W. C., Chaves-Campos, J., & LaVal, R. K.
Title Impact of artificial lights on foraging of insectivorous bats in a Costa Rican cloud forest Type Journal Article
Year 2019 Publication Journal of Tropical Ecology Abbreviated Journal
Volume 35 Issue 1 Pages 8-17
Keywords Animals
Abstract Determining the effects of light pollution on tropical bat communities is important for understanding community assembly rules in urban areas. Studies from temperate regions suggest that, among aerial insectivorous bats, fast-flying species that forage in the open are attracted to artificial lights, whereas slow-flying species that forage in cluttered environments avoid those lights. We measured aerial insectivore responses to light pollution in a tropical cloud forest to test this hypothesis. Bat echolocation was recorded at 20 pairs of light and dark sites in Monteverde, Costa Rica. Foraging activity was higher at artificially lighted sites than dark sites near the new moon, especially around blue-white fluorescent lighting. Most recorded bat species showed increased or unchanged activity in response to light, including some slow-flying and edge-foraging bats. This finding suggests that, contrary to the evaluated hypothesis, flight speed and foraging mode are not sufficient to determine bat responses to artificial lights in the tropics. Two bat species showed decreased activity at light sites, and a low species evenness was recorded around lights, particularly fluorescent lights, compared with dark sites. As in the temperate zone, light pollution in the tropics seems to concentrate certain bat species around human-inhabited areas, potentially shifting community structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2311
Permanent link to this record
 

 
Author Pushkala, K., Gupta, P. D., & Geetha, R.
Title Differential Drift in Menarcheal Age in Blind and Sighted Girls Type Journal Article
Year 2018 Publication Gynaecology and Perinatology Abbreviated Journal
Volume 2 Issue 4 Pages 333-339
Keywords Human Health
Abstract Our survey data show that menarcheal age, both in sighted and blind girls has drifted towards younger years compared to 50 years back, however, in sighted girls it has gone further down compared to blind girls. In this paper we have explained the reasons, why it is so? For the comparison sake we were very careful to select sighted and blind girls from the same geographical region, socio-economical and education status and food habits. Taking into consideration, our earlier hypothesis, “blind women and breast cancer”, here also we propose that only the photo regulatory system for hormonal axis is responsible for differential lowering of Menarcheal age in sighted and blind girls, since all other regulatory factors are same in both the groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2320
Permanent link to this record