|   | 
Details
   web
Records
Author Straka, T.M.; Greif, S.; Schultz, S.; Goerlitz, H.R.; Voigt, C.C.
Title The effect of cave illumination on bats Type Journal Article
Year 2019 Publication Global Ecology and Conservation Abbreviated Journal Global Ecology and Conservation
Volume 21 Issue (up) Pages e00808
Keywords Animals; Lighting
Abstract Artificial light at night has large impacts on nocturnal wildlife such as bats, yet its effect varies with wavelength of light, context, and across species involved. Here, we studied in two experiments how wild bats of cave-roosting species (Rhinolophus mehelyi, R. euryale, Myotis capaccinii and Miniopterus schreibersii) respond to LED lights of different colours. In dual choice experiments, we measured the acoustic activity of bats in response to neutral-white, red or amber LED at a cave entrance and in a flight room – mimicking a cave interior. In the flight room, M. capaccinii and M. schreibersii preferred red to white light, but showed no preference for red over amber, or amber over white light. In the cave entrance experiment, all light colours reduced the activity of all emerging species, yet red LED had the least negative effect. Rhinolophus species reacted most strongly, matching their refusal to fly at all under any light treatment in the flight room. We conclude that the placement and light colour of LED light should be considered carefully in lighting concepts for caves both in the interior and at the entrance. In a cave interior, red LED light could be chosen – if needed at all – for careful temporary illumination of areas, yet areas important for bats should be avoided based on the precautionary principle. At cave entrances, the high sensitivity of most bat species, particularly of Rhinolophus spp., towards light sources almost irrespective of colour, calls for utmost caution when illuminating cave entrances.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2351-9894 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2700
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L.
Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
Year 2019 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume in press Issue (up) Pages 1365-2435.13485
Keywords Ecology; Bacteria; Ecosystems
Abstract Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbors, ports and marinas).

2.By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3.Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4.Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5.ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi(at)unipi.it
Corporate Author Thesis
Publisher British Ecological Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2746
Permanent link to this record
 

 
Author Secondi, J.; Davranche, A.; Théry, M.; Mondy, N.; Lengagne, T.; Isaac, N.
Title Assessing the effects of artificial light at night on biodiversity across latitude – Current knowledge gaps Type Journal Article
Year 2019 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr
Volume in press Issue (up) Pages geb.13037
Keywords Ecology; biodiversity; Review
Abstract Aim

Exposure to artificial light at night (ALAN) is a risk factor for organisms. Considering the spread and increasing intensity of night brightness across the globe, and the key role of light at all biological levels, alterations of ecosystems are expected. Yet, we cannot predict the severity of the effects of ALAN in several biomes because little information is available outside the temperate zone. We reviewed current knowledge and identified traits that could be targeted to fill this knowledge gap in order to contribute to the elaboration of a biogeographical framework for the study of ALAN at the global scale.

Location

Global.

Time period

Current and next decades.

Methods

We analysed the latitudinal variation in ALAN and focused on environmental factors that vary with latitude but that have been overlooked. We reviewed biological traits that exhibit latitudinal variation and depend on light and photoperiod and compiled information about the predicted changes in human demography and road networks across different world regions.

Results

Cloud cover amplifies ALAN far away from urbanized areas. Because of the higher frequency of overcast sky nights, exposure effects may be stronger both at high latitudes and across a large fraction of the intertropical zone, although at different times of the year. Intertropical biomes host the largest fraction of global biodiversity. Although currently they are not the most exposed to ALAN, their human populations are growing, and urbanized areas and road networks are expanding. Hence, ALAN could have strong ecological consequences, with cloud cover as an aggravating factor.

Perspectives

Knowledge gaps currently limit our ability to predict the effects of ALAN in different biomes. Therefore, it will be important to start investigating the consequences of this novel environmental factor across the globe, in order to develop a relevant theoretical framework.
Address
Corporate Author Wiley Thesis
Publisher English Place of Publication English Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2758
Permanent link to this record
 

 
Author Kyba, C.C.M.; Conrad, J.; Shatwell, T.
Title Lunar illuminated fraction is a poor proxy for moonlight exposure Type Journal Article
Year 2020 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol
Volume 4 Issue (up) Pages 318-319
Keywords Animals; Moonlight; Commentary
Abstract San-Jose et al. recently demonstrated that the colouration of barn owls impacts their hunting success under moonlit conditions, and therefore affects their reproductive success1. They found that near full-moon conditions, the youngest nestlings with white fathers were fed more and were likelier to survive than those with redder fathers. While the study is interesting, the percentage of the Moon that is illuminated (lunar illuminated fraction) is unfortunately a poor proxy for moonlight exposure. We suggest that lunar illluminated fraction should, in general, never be used in biological studies, as alternative variables such as horizontal illuminance better represent moonlight exposure, and therefore offer a greater chance of detecting the effects of moonlight. Here, we provide a brief explanation of how moonlight varies with season and time of night, and stress the need for greater collaboration between biologists and astronomers or physicists in such studies in the future.
Address Seenforschung, Helmholtz-Zentrum fur Umweltforschung-UFZ, Magdeburg, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-334X ISBN Medium
Area Expedition Conference
Notes PMID:32015523 Approved no
Call Number GFZ @ kyba @ Serial 2827
Permanent link to this record
 

 
Author Voigt, C.C., Scholl, J.M., Bauer, J. et al.
Title Movement responses of common noctule bats to the illuminated urban landscape Type Journal Article
Year 2020 Publication Landscape Ecology Abbreviated Journal
Volume 35 Issue (up) Pages 189-201
Keywords Animals
Abstract Context

Cities are a challenging habitat for obligate nocturnal mammals because of the ubiquitous use of artificial light at night (ALAN). How nocturnal animals move in an urban landscape, particularly in response to ALAN is largely unknown.

Objectives

We studied the movement responses, foraging and commuting, of common noctules (Nyctalus noctula) to urban landscape features in general and ALAN in particular.

Methods

We equipped 20 bats with miniaturized GPS loggers in the Berlin metropolitan area and related spatial positions of bats to anthropogenic and natural landscape features and levels of ALAN.

Results

Common noctules foraged close to ALAN only next to bodies of water or well vegetated areas, probably to exploit swarms of insects lured by street lights. In contrast, they avoided illuminated roads, irrespective of vegetation cover nearby. Predictive maps identified most of the metropolitan area as non-favoured by this species because of high levels of impervious surfaces and ALAN. Dark corridors were used by common noctules for commuting and thus likely improved the permeability of the city landscape.

Conclusions

We conclude that the spatial use of common noctules, previously considered to be more tolerant to light than other bats, is largely constrained by ALAN. Our study is the first individual-based GPS tracking study to show sensitive responses of nocturnal wildlife to light pollution. Approaches to protect urban biodiversity need to include ALAN to safeguard the larger network of dark habitats for bats and other nocturnal species in cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2961
Permanent link to this record