|   | 
Details
   web
Records
Author Heiling, A.M.
Title Why do nocturnal orb-web spiders (Araneidae) search for light? Type Journal Article
Year 1999 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behavioral Ecology and Sociobiology
Volume 46 Issue (up) 1 Pages 43-49
Keywords Animals
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0340-5443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 671
Permanent link to this record
 

 
Author Weishampel, Z.A.; Cheng, W.-H.; Weishampel, J.F.
Title Sea turtle nesting patterns in Florida vis-à-vis satellite-derived measures of artificial lighting Type Journal Article
Year 2016 Publication Remote Sensing in Ecology and Conservation Abbreviated Journal Remote Sens Ecol Conserv
Volume 2 Issue (up) 1 Pages 59-72
Keywords Animals; sea turtles; Artificial light; DMSP; light pollution; marine turtles; nest surveys; simultaneous autoregressive modeling; Florida; United States; Loggerhead turtle; Caretta caretta; Leatherback turtle; Dermochelys coriacea; Green turtle; Chelonia mydas
Abstract Light pollution contributes to the degradation and reduction of habitat for wildlife. Nocturnally nesting and hatching sea turtle species are particularly sensitive to artificial light near nesting beaches. At local scales (0.01–0.1 km), artificial light has been experimentally shown to deter nesting females and disorient hatchlings. This study used satellite-based remote sensing to assess broad scale (~1–100s km) effects of artificial light on nesting patterns of loggerhead (Caretta caretta), leatherback (Dermochelys coriacea) and green turtles (Chelonia mydas) along the Florida coastline. Annual artificial nightlight data from 1992 to 2012 acquired by the Defense Meteorological Satellite Program (DMSP) were compared to an extensive nesting dataset for 368, ~1 km beach segments from this same 21-year period. Relationships between nest densities and artificial lighting were derived using simultaneous autoregressive models to adjust for the presence of spatial autocorrelation. Though coastal urbanization increased in Florida during this period, nearly two-thirds of the surveyed beaches exhibited decreasing light levels (N = 249); only a small fraction of the beaches showed significant increases (N = 52). Nest densities for all three sea turtle species were negatively influenced by artificial light at neighborhood scales (<100 km); however, only loggerhead and green turtle nest densities were influenced by artificial light levels at the individual beach scale (~1 km). Satellite monitoring shows promise for light management of extensive or remote areas. As the spectral, spatial, and temporal resolutions of the satellite data are coarse, ground measurements are suggested to confirm that artificial light levels on beaches during the nesting season correspond to the annual nightlight measures.
Address Department of Biology, University of Central Florida, Orlando, FL 32816 USA; John.Weishampel(at)ucf.edu
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2056-3485 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1346
Permanent link to this record
 

 
Author Shapira, I.; Walker, E.; Brunton, D.H.; Raubenheimer, D.
Title Responses to direct versus indirect cues of predation and competition in na&#970;ve invasive mice: implications for management Type Journal Article
Year 2013 Publication New Zealand Journal of Ecology Abbreviated Journal NZ J. of Ecol.
Volume 37 Issue (up) 1 Pages 33-40
Keywords Animals; Mus musculus; mice; New Zealand; foraging; moonlight; giving-up density; GUD; moon phase
Abstract Many populations of invasive mice Mus musculus in New Zealand have experienced the removal of mammalian predators and competitors, with the consequence of mouse population irruptions. The effects of these removals on mouse foraging are largely unknown, yet this information is essential for developing and implementing better mouse control. We investigated the effects of direct and indirect predatory cues on foraging of free-ranging mice at a site where mammalian predators were eradicated 5 years previously. We used 17 stations, each containing four trays of millet seeds mixed thoroughly in sand, with three unfamiliar mammalian (a predator, a competitor, and a herbivore) odour treatments and a control (water), during the four phases of the moon. We measured mouse selectivity for treatment/control trays, giving-up densities (GUDs, a measure of food consumption), and tray encounter rates. Foraging by mice was not affected by odour cues from any of the unfamiliar mammals. Moonlight intensity, however, affected mouse foraging, with higher GUDs being recorded on brighter moon phases (full and waxing > new and waning) during the first night of the trials. This effect was less pronounced during the second night. Resource encounter rates were also affected, with the proportion of trays foraged lower during the brighter phases of the moon on both the first and second nights. We suggest that coordinating management efforts according to the phases of the moon has the potential to improve mouse control and reduce bait wastage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 01106465 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1364
Permanent link to this record
 

 
Author Plummer, K.E.; Hale, J.D.; O'Callaghan, M.J.; Sadler, J.P.; Siriwardena, G.M.
Title Investigating the impact of street lighting changes on garden moth communities Type Journal Article
Year 2016 Publication Journal of Urban Ecology Abbreviated Journal J Urban Ecol
Volume 2 Issue (up) 1 Pages juw004
Keywords Animals
Abstract Night time illumination of cities is undergoing radical change through the adoption of new street lighting technologies, but the impacts of these large-scale changes on biodiversity have not been explored. Moths are of particular concern because of their nocturnal ‘flight-to-light’ responses. Here we examine in situ effects of (1) street lamp replacement and (2) the spatial distribution of local street lighting on garden moth communities in Birmingham, UK, to determine whether current shifts in street lighting infrastructure are leading to an increased attraction of moths into suburban areas. Using a unique before-after-control-impact survey, we show that switching from narrow (low-pressure sodium) to broad spectrum (high-pressure sodium) lamps significantly increases the diversity of macro-moths in suburban gardens. Furthermore, we demonstrate the complex ways in which the moth community differentially responds to variation in street lighting characteristics. In particular we found that macro-moth attraction was greatest at high lamp densities, whilst micro-moth families responded more strongly to street lamp proximity and the density of UV-emitting lamps specifically. Our findings indicate that moths are attracted to suburban gardens with closer, more dense and more spectrally diverse local street lighting, and suggest that suburban areas could represent ecological traps for moth communities if they have insufficient resources to support moth survival and reproduction. Further research is now needed to determine whether street lighting is progressively damaging moth communities, and to understand whether these impacts could be mitigated through changes to street lighting regimes or through the provision of ecologically important habitats in urban landscapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2058-5543 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1500
Permanent link to this record
 

 
Author Lewanzik, D.; Voigt, C.C.; Minderman, J.
Title Transition from conventional to light-emitting diode street lighting changes activity of urban bats Type Journal Article
Year 2016 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol
Volume 54 Issue (up) 1 Pages 264-271
Keywords Animals; Bats
Abstract Light pollution is rapidly increasing and can have deleterious effects on biodiversity, yet light types differ in their effect on wildlife. Among the light types used for street lamps, light-emitting diodes (LEDs) are expected to become globally predominant within the next few years.

In a large-scale field experiment, we recorded bat activity at 46 street lights for 12 nights each and investigated how the widespread replacement of conventional illuminants by LEDs affects urban bats: we compared bat activity at municipal mercury vapour (MV) street lamps that were replaced by LEDs with control sites that were not changed.

Pipistrellus pipistrellus was the most frequently recorded species; it was 45% less active at LEDs than at MV street lamps, but the activity did not depend on illuminance level. Light type did not affect the activity of Pipistrellus nathusii, Pipistrellus pygmaeus or bats in the Nyctalus/Eptesicus/Vespertilio (NEV) group, yet the activity of P. nathusii increased with illuminance level. Bats of the genus Myotis increased activity 4·5-fold at LEDs compared with MV lights, but illuminance level had no effect.

Decreased activity of P. pipistrellus, which are considered light tolerant, probably paralleled insect densities around lights. Further, our results suggest that LEDs may be less repelling for light-averse Myotis spp. than MV lights. Accordingly, the transition from conventional lighting techniques to LEDs may greatly alter the anthropogenic impact of artificial light on urban bats and might eventually affect the resilience of urban bat populations.

Synthesis and applications. At light-emitting diodes (LEDs), the competitive advantage – the exclusive ability to forage on insect aggregations at lights – is reduced for light-tolerant bats. Thus, the global spread of LED street lamps might lead to a more natural level of competition between light-tolerant and light-averse bats. This effect could be reinforced if the potential advantages of LEDs over conventional illuminants are applied in practice: choice of spectra with relatively little energy in the short wavelength range; reduced spillover by precisely directing light; dimming during low human activity times; and control by motion sensors. Yet, the potential benefits of LEDs could be negated if low costs foster an overall increase in artificial lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8901 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1518
Permanent link to this record