|   | 
Details
   web
Records
Author Cronin, A.D.; Ryan, M.J.; Page, R.A.; Hunter, K.L.; Taylor, R.C.
Title Environmental heterogeneity alters mate choice behavior for multimodal signals Type Journal Article
Year 2019 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behav Ecol Sociobiol
Volume 73 Issue Pages
Keywords (up) Animals
Abstract nimals frequently experience changes in their environment, including diel and seasonal shifts in abiotic and biotic factors. In addition to physiological and morphological changes, animals alter their behavior in response to environmental variation. This study examined the impacts of heterogeneous environments on mating behaviors. We examined both male and female túngara frog phonotactic responses to multimodal (audiovisual) and unimodal (acoustic) stimuli. We altered aspects of the physical environment by changing substrate (terrestrial and aquatic) and ambient light levels. Females demonstrated a similar preference for the audiovisual stimulus regardless of substrate but decreased latency to choose in an aquatic environment. When ambient light levels were increased (relative to darker control), females reversed their preference, avoiding the multimodal stimulus, but the latency to choose was unchanged. Males demonstrated no preference for the multimodal signal on either substrate, but like females, male latency was reduced in an aquatic environment. Different environments carry their own associated costs, including varying levels of predation risk. Increased light levels and an aquatic environment likely carry higher predation risk and therefore should lead to changes in female and male responses. Interestingly, these two environments do not cause uniform changes in female responses. The addition of an aquatic environment led to a reduction in latency, whereas an increase in ambient light levels induced a change in female mate preference. These findings demonstrate the importance of the environment on mating responses to multimodal signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0340-5443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2262
Permanent link to this record
 

 
Author Frank, T. M., Gabbert, W. C., Chaves-Campos, J., & LaVal, R. K.
Title Impact of artificial lights on foraging of insectivorous bats in a Costa Rican cloud forest Type Journal Article
Year 2019 Publication Journal of Tropical Ecology Abbreviated Journal
Volume 35 Issue 1 Pages 8-17
Keywords (up) Animals
Abstract Determining the effects of light pollution on tropical bat communities is important for understanding community assembly rules in urban areas. Studies from temperate regions suggest that, among aerial insectivorous bats, fast-flying species that forage in the open are attracted to artificial lights, whereas slow-flying species that forage in cluttered environments avoid those lights. We measured aerial insectivore responses to light pollution in a tropical cloud forest to test this hypothesis. Bat echolocation was recorded at 20 pairs of light and dark sites in Monteverde, Costa Rica. Foraging activity was higher at artificially lighted sites than dark sites near the new moon, especially around blue-white fluorescent lighting. Most recorded bat species showed increased or unchanged activity in response to light, including some slow-flying and edge-foraging bats. This finding suggests that, contrary to the evaluated hypothesis, flight speed and foraging mode are not sufficient to determine bat responses to artificial lights in the tropics. Two bat species showed decreased activity at light sites, and a low species evenness was recorded around lights, particularly fluorescent lights, compared with dark sites. As in the temperate zone, light pollution in the tropics seems to concentrate certain bat species around human-inhabited areas, potentially shifting community structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2311
Permanent link to this record
 

 
Author Laforge, A., Pauwels, J., Faure, B., Bas, Y., Kerbiriou, C., Fonderflick, J., & Besnard, A.
Title Reducing light pollution improves connectivity for bats in urban landscapes Type Journal Article
Year 2019 Publication Landscape Ecology Abbreviated Journal
Volume Issue Pages 1-17
Keywords (up) Animals
Abstract Context

Light pollution can alter animal movements and landscape connectivity. This is particularly true in urban landscapes where a need to incorporate conservation issues in urban planning is urgent.

Objectives

We investigated how potential light-reduction scenarios at conurbation scale change landscape connectivity for bats.

Methods

Through random stratified sampling and species distribution modelling, we assessed the relative importance of light pollution on bat presence probability and activity. We recorded bats during one entire night on each 305 sampling points in 2015. In 2016, we surveyed 94 supplementary points to evaluate models performance. We used our spatial predictions to characterize landscape resistance to bat movements. Then we applied a least-cost modelling approach to identify nocturnal corridors and estimated the impact of five light-reduction scenarios on landscape connectivity for two light non-tolerant bat species.

Results

We found that light pollution detected from satellite images was a good predictor of bat presence and activity up to 700 m radius. Our results exhibited contrasting responses to average radiance: M. daubentonii responded negatively, P. nathusii had a positive response for low values then a negative response after a threshold radiance value of 20 W.m−2.sr−1 and E. serotinus responded positively. Five and four light-reduction scenarios significantly improved landscape connectivity for M. daubentonii and P. nathusii respectively.

Conclusions

Light-reduction measures should be included in urban planning to provide sustainable conditions for bats in cities. We advocate for the use of our methodological approach to further studies to find the best trade-off between conservation needs and social acceptability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2345
Permanent link to this record
 

 
Author McMahon, T.A.; Rohr, J.R.; Bernal, X.E.
Title Light and noise pollution interact to disrupt interspecific interactions Type Journal Article
Year 2017 Publication Ecology Abbreviated Journal Ecology
Volume 98 Issue 5 Pages 1290-1299
Keywords (up) Animals
Abstract Studies on the consequences of urbanization often examine the effects of light, noise, and heat pollution independently on isolated species providing a limited understanding of how these combined stressors affect species interactions. Here, we investigate how these factors interact to affect parasitic frog-biting midges (Corethrella spp.) and their tungara frog (Engystomops pustulosus) hosts. A survey of tungara frog calling sites revealed that frog abundance was not significantly correlated with urbanization, light, noise, or temperature. In contrast, frog-biting midges were sensitive to light pollution and noise pollution. Increased light intensity significantly reduced midge abundance at low noise levels. At high noise intensity, there were no midges regardless of light level. Two field experiments controlling light and noise levels to examine attraction of the midges to their host and their feeding behavior confirmed the causality of these field patterns. These findings demonstrate that both light and noise pollution disrupt this host-parasite interaction and highlight the importance of considering interactions among species and types of pollutants to accurately assess the impacts of urbanization on ecological communities.
Address Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana, 47907, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes PMID:28170099 Approved no
Call Number GFZ @ kyba @ Serial 2443
Permanent link to this record
 

 
Author Welbers, A.A.M.H.; van Dis, N.E.; Kolvoort, A.M.; Ouyang, J.; Visser, M.E.; Spoelstra, K.; Dominoni, D.M.
Title Artificial Light at Night Reduces Daily Energy Expenditure in Breeding Great Tits (Parus major) Type Journal Article
Year 2017 Publication Frontiers in Ecology and Evolution Abbreviated Journal Front. Ecol. Evol.
Volume 5 Issue Pages
Keywords (up) Animals
Abstract The ecological impact of artificial light at night (ALAN) is an increasingly recognized process that accompanies expanding urbanization. Yet, we have limited knowledge on the impact of ALAN on wild species, and on the potential to mitigate any negative effects by using different light sources and colors. In birds, effects of ALAN on activity levels are reported for several species and, hence, their daily energy expenditure (DEE) may be affected. DEE is a potent mediator of life-history trade-offs and fitness and thus an important aspect to consider when examining the potential long-term ecological effects of ALAN. Previous work has suggested that birds exposed to ALAN show higher levels of provisioning and nocturnal activity, suggesting that white ALAN increases DEE. Other factors regulating DEE, such as provisioning behavior and food availability, might also respond to ALAN and thus indirectly affect DEE. We tested the hypothesis that ALAN increases DEE using an experimental setup where four previously unlit transects were illuminated with either white, green, or red LED light, or left dark as a control treatment. This setup was replicated in eight locations across the Netherlands. We measured DEE of our focal species, the great tit (Parus major), using a novel doubly labeled water technique that uses breath rather than blood samples. Contrary to our expectations, birds feeding their offspring under white and green ALAN showed lower DEE compared to birds in the control dark treatment. Differences in chick provisioning activity did not explain this result, as neither visit rates nor daily activity timing was affected by light treatment. However, food availability under white and green light was much higher compared to red light and the dark control. This difference strongly suggests that the lower DEE under white and green ALAN sites is a consequence of higher food availability in these treatments. This result shows that there can be positive, indirect effects of ALAN for breeding song birds which may balance against the negative direct effects shown in previous studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-701X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2460
Permanent link to this record